The S4AllCities project has progressed rapidly during the last twelve months since it began in 2020 for the development of three distinct digital twins that collectively augment intelligence concerning cyber and physical security monitoring in smart urban spaces. These respectively specialize on; a) Distributed Edge Computing IoT (DEC-IoT); b) Malicious Actions Information Detection System (MAIDS); and c) Augmented Context Management System (ACMS) (S4AllCities, 2020). These three twins are built under a distributed System of Systems (SoS) architecture. Further, they each acquire real-time observations of both cyber and physical spaces while processing data for the critical extraction of knowledge at their levels. The extracted knowledge, represented as “events” at each of the respective twins levels, is communicated across the S4AllCities SoS Apache Kafka communication client/ server protocols. These respectively specialize in advancement of situation awareness at their levels. Namely, for the intelligent edge processing of observations in the urban space under the DEC-IoT; the detection of unusualness and understanding of cyber and human behavior under the MAIDS; while augmenting all awareness for the final release of threat alerts and proposed regulated responses (ACMS). In this paper, we will introduce the S4AllCities SoS overall architecture and the three twins high level functions. Then we will focus on describing our development of the MAIDS sub-modules and their functions under the De-Facto Joint Director of Laboratory (JDL) data fusion framework. The JDL framework efficiently enables the intelligent monitoring, detection and interpretation of the potential presence of threats and/or attacks in urban spaces. These attacks are either of cyber, physical, or both malicious nature. The well-known Endsley model for the cognitive advancement of situational awareness is mapped into the JDL framework in the context of critical decision support on cyber-physical surveillance in urban spaces. The JDL is much more adaptive for big data processing, machine learning, context knowledge modelling and augmented situational awareness of the cyber-physical space.

Digital Twins for the Intelligent Detection of Malicious Activities in Urban Spaces, 2022.

Digital Twins for the Intelligent Detection of Malicious Activities in Urban Spaces

Bruno, Alessandro;
2022-01-01

Abstract

The S4AllCities project has progressed rapidly during the last twelve months since it began in 2020 for the development of three distinct digital twins that collectively augment intelligence concerning cyber and physical security monitoring in smart urban spaces. These respectively specialize on; a) Distributed Edge Computing IoT (DEC-IoT); b) Malicious Actions Information Detection System (MAIDS); and c) Augmented Context Management System (ACMS) (S4AllCities, 2020). These three twins are built under a distributed System of Systems (SoS) architecture. Further, they each acquire real-time observations of both cyber and physical spaces while processing data for the critical extraction of knowledge at their levels. The extracted knowledge, represented as “events” at each of the respective twins levels, is communicated across the S4AllCities SoS Apache Kafka communication client/ server protocols. These respectively specialize in advancement of situation awareness at their levels. Namely, for the intelligent edge processing of observations in the urban space under the DEC-IoT; the detection of unusualness and understanding of cyber and human behavior under the MAIDS; while augmenting all awareness for the final release of threat alerts and proposed regulated responses (ACMS). In this paper, we will introduce the S4AllCities SoS overall architecture and the three twins high level functions. Then we will focus on describing our development of the MAIDS sub-modules and their functions under the De-Facto Joint Director of Laboratory (JDL) data fusion framework. The JDL framework efficiently enables the intelligent monitoring, detection and interpretation of the potential presence of threats and/or attacks in urban spaces. These attacks are either of cyber, physical, or both malicious nature. The well-known Endsley model for the cognitive advancement of situational awareness is mapped into the JDL framework in the context of critical decision support on cyber-physical surveillance in urban spaces. The JDL is much more adaptive for big data processing, machine learning, context knowledge modelling and augmented situational awareness of the cyber-physical space.
Inglese
2022
13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022)
internazionale
contributo
9781958651438
United States
AHFE Open Access
esperti anonimi
Online
Settore INF/01 - Informatica
9
File in questo prodotto:
File Dimensione Formato  
978-1-958651-43-8_13.pdf

Open Access

Tipologia: Documento in Post-print
Dimensione 851.34 kB
Formato Adobe PDF
851.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10808/50888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact