EUSO-SPB1 was a balloon-borne pathfinder mission of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. A 12-day long flight started from New Zealand on April 25th, 2017 on-board the NASA's Super Pressure Balloon. With capability of detecting EeV energy air showers, the data acquisition was performed using a 1 m^2 two-Fresnel-lens UV-sensitive telescope with fast readout electronics in the air shower detection mode over ~30 hours at ~16--30 km above South Pacific. Using a variety of approaches, we searched for air shower events. Up to now, no air shower events have been identified. The effective exposure, regarding the role of the clouds in particular, was estimated based on the air shower and detector simulations together with a numerical weather forecast model. Compared with the case assuming the fully clear atmosphere conditions, more than ~60% of showers are detectable regardless the presence of the clouds. The studies in the present work will be applied in the follow-up pathfinders and in the future full-scale missions in the JEM-EUSO program.

Estimation of the exposure for the air shower detection mode of EUSO-SPB1, 2019.

Estimation of the exposure for the air shower detection mode of EUSO-SPB1

Bruno, A.;Diaz, A.;
2019-01-01

Abstract

EUSO-SPB1 was a balloon-borne pathfinder mission of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. A 12-day long flight started from New Zealand on April 25th, 2017 on-board the NASA's Super Pressure Balloon. With capability of detecting EeV energy air showers, the data acquisition was performed using a 1 m^2 two-Fresnel-lens UV-sensitive telescope with fast readout electronics in the air shower detection mode over ~30 hours at ~16--30 km above South Pacific. Using a variety of approaches, we searched for air shower events. Up to now, no air shower events have been identified. The effective exposure, regarding the role of the clouds in particular, was estimated based on the air shower and detector simulations together with a numerical weather forecast model. Compared with the case assuming the fully clear atmosphere conditions, more than ~60% of showers are detectable regardless the presence of the clouds. The studies in the present work will be applied in the follow-up pathfinders and in the future full-scale missions in the JEM-EUSO program.
Inglese
2019
https://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=358
36th International Cosmic Ray Conference, ICRC 2019
36
internazionale
contributo
Italy
Proceedings of Science
esperti anonimi
Online
Settore FIS/05 - Astronomia e Astrofisica
14
File in questo prodotto:
File Dimensione Formato  
1909.05713.pdf

Open Access

Tipologia: Documento in Pre-print
Dimensione 745 kB
Formato Adobe PDF
745 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10808/50644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact