Machine learning approaches have been fruitfully applied to several neurophysiological signal classification problems. Considering the relevance of emotion in human cognition and behaviour, an important application of machine learning has been found in the field of emotion identification based on neurophysiological activity. Nonetheless, there is high variability in results in the literature depending on the neuronal activity measurement, the signal features and the classifier type. The present work aims to provide new methodological insight into machine learning applied to emotion identification based on electrophysiological brain activity. For this reason, we analysed previously recorded EEG activity measured while emotional stimuli, high and low arousal (auditory and visual) were provided to a group of healthy participants. Our target signal to classify was the pre-stimulus onset brain activity. Classification performance of three different classifiers (LDA, SVM and kNN) was compared using both spectral and temporal features. Furthermore, we also contrasted the performance of static and dynamic (time evolving) approaches. The best static feature-classifier combination was the SVM with spectral features (51.8%), followed by LDA with spectral features (51.4%) and kNN with temporal features (51%). The best dynamic feature‑classifier combination was the SVM with temporal features (63.8%), followed by kNN with temporal features (63.70%) and LDA with temporal features (63.68%). The results show a clear increase in classification accuracy with temporal dynamic features.

Applying machine learning EEG signal classification to emotion related brain anticipatory activity, 2021-10-13.

Applying machine learning EEG signal classification to emotion related brain anticipatory activity

Marco Bilucaglia
Conceptualization
;
2021-10-13

Abstract

Machine learning approaches have been fruitfully applied to several neurophysiological signal classification problems. Considering the relevance of emotion in human cognition and behaviour, an important application of machine learning has been found in the field of emotion identification based on neurophysiological activity. Nonetheless, there is high variability in results in the literature depending on the neuronal activity measurement, the signal features and the classifier type. The present work aims to provide new methodological insight into machine learning applied to emotion identification based on electrophysiological brain activity. For this reason, we analysed previously recorded EEG activity measured while emotional stimuli, high and low arousal (auditory and visual) were provided to a group of healthy participants. Our target signal to classify was the pre-stimulus onset brain activity. Classification performance of three different classifiers (LDA, SVM and kNN) was compared using both spectral and temporal features. Furthermore, we also contrasted the performance of static and dynamic (time evolving) approaches. The best static feature-classifier combination was the SVM with spectral features (51.8%), followed by LDA with spectral features (51.4%) and kNN with temporal features (51%). The best dynamic feature‑classifier combination was the SVM with temporal features (63.8%), followed by kNN with temporal features (63.70%) and LDA with temporal features (63.68%). The results show a clear increase in classification accuracy with temporal dynamic features.
Inglese
13-ott-2021
9
173
internazionale
esperti anonimi
con ISI Impact Factor
Online
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
5
File in questo prodotto:
File Dimensione Formato  
2021-F1000research.pdf

Open Access

Descrizione: Full text
Tipologia: Documento in Post-print
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10808/48024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact