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Abstract 
Machine learning approaches have been fruitfully applied to several 
neurophysiological signal classification problems. Considering the 
relevance of emotion in human cognition and behaviour, an 
important application of machine learning has been found in the field 
of emotion identification based on neurophysiological activity. 
Nonetheless, there is high variability in results in the literature 
depending on the neuronal activity measurement, the signal features 
and the classifier type. The present work aims to provide new 
methodological insight into machine learning applied to emotion 
identification based on electrophysiological brain activity. For this 
reason, we analysed previously recorded EEG activity measured while 
emotional stimuli, high and low arousal (auditory and visual) were 
provided to a group of healthy participants. Our target signal to 
classify was the pre-stimulus onset brain activity. Classification 
performance of three different classifiers (LDA, SVM and kNN) was 
compared using both spectral and temporal features. Furthermore, 
we also contrasted the performance of static and dynamic (time 
evolving) approaches. The best static feature-classifier combination 
was the SVM with spectral features (51.8%), followed by LDA with 
spectral features (51.4%) and kNN with temporal features (51%). The 
best dynamic feature‑classifier combination was the SVM with 
temporal features (63.8%), followed by kNN with temporal features 
(63.70%) and LDA with temporal features (63.68%). The results show a 
clear increase in classification accuracy with temporal dynamic 
features.
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            Amendments from Version 2

Table 6 was revised.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

Introduction
In last decades, the vision of the brain has moved from a pas-
sive stimuli elaborator to an active reality builder. In other 
words, the brain is able to extract information from the envi-
ronment, building up inner models of external reality. These 
models are used to optimize the behavioural outcome when  
reacting to upcoming stimuli1–4.

One of the main theoretical models assumes that the brain, 
in order to regulate body reaction, runs an internal model of 
the body in the world, as described by embodied simulation  
framework5. A much-investigated hypothesis is that the brain 
functions as a Bayesian filter for incoming sensory input; that 
is, it activates a sort of prediction based on previous experi-
ences about what to expect from the interaction with the social 
and natural environment, including emotion6. In light of this, 
it is possible to consider emotions, not only as a reaction to the 
external world, but also as partially shaped by our internal  
representation of the environment, which help us to anticipate  
possible scenarios and therefore to regulate our behaviour.

The construction model of emotion7 argues that the human being 
actively builds-up his/her emotions in relation to the every-
day life and social context in which they are placed. We actively 
generate a familiar range of emotions in our reality, based 
on their usefulness and relevance in our environment. In this  
scenario, in a familiar context we are able to anticipate which 
emotions will be probably elicited, depending on our model. 
As a consequence, the study of the anticipation of/preparation 
for forthcoming stimuli may represent a precious window for 
understanding the individual internal model and emotion con-
struction process, resulting in a better understanding of human  
behaviour.

A strategy to study preparatory activity could be related to the 
experimental paradigm in which cues are provided regard-
ing the forthcoming stimuli, allowing the investigation of 
the brain activity dedicated to the elaboration of incoming  
stimuli8,9. A cue experiment to predict the emotional valence 
of the forthcoming stimuli showed that the brain’s anticipa-
tory activation facilitates, for example, successful reappraisal via 
reduced anticipatory prefrontal cognitive elaboration and bet-
ter integration of affective information in the paralimbic and  
subcortical systems10. Furthermore, preparation for forthcom-
ing emotional stimuli also has relevant implications for clinical  
psychological conditions, such as mood disorders or anxiety11,12.

Recently, the study of brain anticipatory activity has been 
extended to statistically unpredictable stimuli13–15, providing 

experimental hints of specific anticipatory activity before 
stimuli are randomly presented. Starting from the abovemen-
tioned studies, we focused on the extension of brain anticipatory  
activity to statistically unpredictable emotional stimuli.

According to the so-called dimensional model, emotion can 
be defined in terms of three different attributes (or dimensions): 
valence, arousal and dominance. Valence measures the positive-
ness (ranging from unpleasant to pleasant), arousal measures 
the activation level (ranging from boredom to frantic excite-
ment) and dominance measures the controllability (i.e. the  
sense of control)16.

Emotions can be estimated from various physiological  
signals17,18, such as via skin conductance, electrocardiogram 
(ECG) and electroencephalogram (EEG). The latter has received 
a considerable amount of attention in the last decade, introduc-
ing several machine learning and signal processing techniques, 
originally developed in other contexts, such as text mining19, data  
processing20 and brain computer interfaces21,22. Emotion rec-
ognition has been re-drawn as a machine learning problem, 
where proper EEG related features are used as inputs to specific  
classifiers.

State of the art
According to the literature, the most common features belong 
the spectral domain, in the form of spectral powers in delta, 
theta, alpha and gamma bands23, as well as power spectral  
density (PSD) bins24. The remaining belong to the time  
domain, in the form of event-related de/synchronizations (ERD/
ERS) and event-related potentials (ERP)23, as well as shape 
related indices such as the Hjorth parameters and the fractal  
dimension24.

The most commonly used classifier is the support vector machine 
(SVM) with the radial basis function (RBF) kernel, followed by 
the k-nearest neighbour (kNN) and the linear discriminant analy-
sis (LDA). When compared with neural network (NN) based 
classfiers (e.g., CNN, MLP-BP, ANN), SVM, kNN and LDA 
are adopted, complexively, 79.3% (NN 3.17%)23, 84% (NN 
15.5%)24, and 44.4% (NN 5.6%)25 of the times. Finally, most of 
the classifiers are implemented as non-adaptive (i.e. static)23, 
in contrast to the dynamic versions that take into account the  
temporal variability of the features26.

The classification performances are very variable because 
of the different features and classifiers adopted. The follow-
ing examples are taken from 23 - in particular, from the subset 
(17 out of 63) of reviewed papers that focused on arousal clas-
sification. Using an SVM (RBF kernel) and spectral features  
(e.g. short-time Fourier transform), Lin and colleagues obtained 
94.4% accuracy (i.e. percentage of corrected classification)27, 
while using similar spectral features (e.g. PSD) and classi-
fier (SVM with no kernel), Koelstra and colleagues obtained an  
accuracy of 55.7%28. Liu and Sourina obtained an accuracy of 
76.5% using temporal features (e.g. fractal dimension) with  
an SVM (no kernel)29, while Murugappan and Murugappan 
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obtained a an accuracy of 63% using similar temporal features 
and an SVM with a polynomial kernel30. Finally, Thammasan 
and collegues obtained an accuracy of 85.3% using spectral  
features (e.g. PSD), but with a kNN (with k=3)31.

The purpose of the present work is to provide new methodo-
logical advancements on the machine learning classification of  
emotions, based on the brain anticipatory activity.

Our main research question can be summarised as: what is the 
best classifier/features combination for the classification of 
the emotions in the brain anticipatory activity framework? For 
this purpose, we compared the performances of the tree most  
common classifiers (namely LDA, SVM, kNN) trained using 
two types of EEG features (namely, spectral and temporal). In 
addition to their popularity, the classifiers were selected as rep-
resentative of 3 different families, namely parametric (LDA),  
discriminative (SVM) and non-parametric (kNN) classifiers, 
as well as 2 additional families, namely linear (LDA) and  
non-linear (SVM, kNN) classifiers. Each classifier was also 
trained followed a dynamic approach, to take into account the  
temporal variability of the features.

The results provide useful insights regarding the best classi-
fier features configuration to better discriminate emotion-related  
brain anticipatory activity.

Within the extended data of the present article32 we included a 
document (titled Machine Learning Introduction) briefly describ-
ing the classification problem. We are aware that the treatment 
is far from being fully exhaustive, but we hope it will serve as 
a comprehensive and self contained starting point for novice  
readers. 

Methods
Ethical statement
The data of the present study were obtained in the experiment 
described in 33, which was approved by the Ethical Committee 
of the Department of General Psychology, University of Padova 
(No. 2278). Before taking part in the experiment, each sub-
ject gave his/her informed consent in writing after having  
read a description of the experiment. In line with department 
policies, this re-analysis of an original study approved by the  
ethics committee did not require new ethical approval.

Stimuli and experimental paradigm
In the present study, we reanalysed the EEG data32 of the 
experiment described in 33, applying a static and dynamic  
classification approach by using the three different classifiers  
and two different feature types.

A more detailed description of the experimental design is avail-
able in the original study. Here we describe only the main  
characteristics.

Two sensory categories of stimuli (i.e. visual and auditory), 
were extracted according to their arousal value from two  
standardized international archives. Visual stimuli consisted of  

pictures of 28 faces, 14 neutral faces and 14 fearful faces 
were extracted from the NIMSTIM archive34, whereas audi-
tory stimuli consisted of 28 sounds, and 14 low- and 14 
high-arousal sounds were chosen from the International  
Affective Digitized Sounds (IADS) archive35. The stimuli were 
labelled as low or high arousal if the corresponding mean  
arousal score was lower or higher than 5, respectively.

To all 28 adult healthy participants, two different experimen-
tal tasks, which were delivered in separate blocks were pre-
sented. Within each task, the stimuli were randomly presented 
and equally distributed according to either sensory category 
(faces or sounds) and arousal level (high or low). Full details of  
these tasks have been described previously in 33.

EEG recording
During the entire experiment, the EEG signal was continu-
ously recorded using a Geodesic high density EEG system (EGI 
GES-300) through a pre-cabled 128-channel HydroCel Geo-
desic Sensor Net (HCGSN-128) referenced to the vertex (CZ), 
with a sampling rate of 500 Hz. The impedance was kept below  
60kΩ for each sensor. To reduce the presence of EOG  
artefacts, subjects were instructed to limit both eye blinks and  
eye movements, as much as possible.

EEG preprocessing
The continuous EEG signal was off-line band-pass filtered 
(0.1–45Hz) using a Hamming windowed sinc finite impulse 
response (FIR) filter (order = 16500) and then downsampled 
at 250 Hz. The EEG was epoched starting from 200 ms before  
the cue onset and ending at the stimulus onset. The ini-
tial epochs were 1300 ms long from the cue onset, including  
300 ms of cue/fixation cross presentation and 1000 ms of  
interstimulus interval (ISI).

All epochs were visually inspected to remove bad channels 
and rare artefacts. Artefact reduced data were then subjected 
to independent component analysis (ICA)35. All independ-
ent components were visually inspected, and those that related 
to eye blinks, eye movements, and muscle artefacts, accord-
ing to their morphology and scalp distribution, were discarded.  
The remaining components were back-projected to the original 
electrode space to obtain cleaner EEG epochs.

The remaining ICA-cleaned epochs that still contained exces-
sive noise or drift (±100 μV at any electrode) were rejected and 
the removed bad channels were reconstructed. Data were then 
re-referenced to the common average reference (CAR) and 
the epochs were baseline corrected by subtracting the mean  
signal amplitude in the pre-stimulus interval. From the original 
1300 ms long epochs, final epochs were obtained only from the 
1000 ms long ISI.

Spectral features for static classification
From each epoch and each channel k, the PSD was estimated 
by a Welch’s periodogram using 250 points long Hamming’s  
windows with 50% overlapping. PSD was first log transformed 
to compensate the skewness of power values36, then the spectral 
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bins corresponding to alpha, beta and theta bands – defined as 
6~13 Hz, 13~30 Hz and 4~6 Hz, respectively37– were summed 
together. Finally, alpha, beta and theta total powers were  
computed as:

                   [13;30]

( )k k
tot

i

PSD iβ
∈
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As a measure of emotional arousal, we computed the ratio 
between beta and alpha total powers k k

tot totβ α 38, while to measure  
cognitive arousal, we computed the ratio between beta and theta  
total powers k k

tot totθ β 39.

For each epoch, the feature (with a dimensionality of 
256) was obtained, concatenating the beta-over-alpha and  
beta-over-theta ratio of all the channels:
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                    (15)

Temporal features for static classification
It has been previously shown that arousal level (high or low) 
can be estimated from the contingent negative variation  
potentials33. The feature extraction procedure, therefore, fol-
lows the classical approach for event-related potentials40. Each 
epoch from each channel was first band pass filtered (0.05~10 Hz)  
using a zero-phase 2nd order Butterworth filter and decimated 
to a sample frequency of 20 Hz. EEG signal was thus normal-
ized (i.e. z-scored) according to the temporal mean and the  
temporal standard deviation:

                         ( ) ( ( ) ) /i i i ik kx t x t m s= −

where ( )i kx t  is the raw signal from i-th channel at time point t
k
, 

and m
i
 and s

i
 are, respectively, the temporal mean and the tem-

poral standard deviation of the i-th channel. For each epoch,  
the feature (with a dimensionality of 2560) was obtained,  
concatenating all normalized signal from each channel:

   [ ]1 1 1 2 1 20 128 1 128 2 128 20( ), ( ),..., ( ),..., ( ), ( ),..., ( )v x t x t x t x t x t x t    (16)

Dynamic approach
Each epoch was partitioned into 125 temporal segments, 500 ms  
long and shifted by 1/250 s (one sample). Within each time 
segment, we extracted the spectral and temporal features for 
dynamic classification, following the same approaches described 
in Spectral features for static classification and Temporall 
features for static classification sub-sections, respectively.  
Temporal features for dynamic classification had a dimensional-
ity of 1280, corresponding to 0.5 × 20 = 10 samples per channel. 
Spectral features for dynamic classification had the same  

dimensionality as their static counterparts (256), but the Welch’s 
periodogram was computed using a 16 points long Hamming’s  
window (zero-padded to 250 points) with 50% overlapping.

Feature reduction and classification
The extracted features (for both the static and dynamic 
approaches) were grouped according to the stimulus type (sound 
or image) and the task (active or passive), in order to clas-
sify the group-related arousal level (high or low). A total of four 
binary classification problems (high arousal vs low arousal) 
were performed: active image (Ac_Im), active sound (Ac_So), 
passive image (Ps_Im) and passive sound (Ps_So). For each  
classification problem, the two classes were approximatively 
balanced, as shown in the following Table 1. We chose a binary 
classification since it is associated to lower computational 
costs than the multiclass alternatives, that are usually obtained 
by a cascade of binary classifications (see Machine Learning  
Introduction within the Extended data32).

Features for static classification were reduced by means of the 
biserial correlation coefficient r2 with the threshold set at 90% 
of the total feature score. In order to identify the discrimina-
tive power of each EEG channel, a series of scalp plots (one 
for each feature type and each group) of the coefficients were 
drawn. Since each channel is associated with N > 1 features  
(as well as N r2 coefficients), the coefficients (one coeffi-
cient for each channel) are calculated as a mean value. In other 
words, spectral and temporal features had two and 20 scalar fea-
tures, respectively, for each EEG channel. To compute their  
scalp plots, we averaged 2 and 20 r2 coefficients of each chan-
nel. To enhance the visualization of the plots, the coefficients 
were finally normalized to the total score and expressed as a  
percentage.

Each classification problem was addressed by the mean of 
three classifiers: LDA with pseudo-inverse covariance matrix; 
soft-margin SVM with penalty parameter C = 1 and RBF ker-
nel; and kNN with Euclidean distance and k=1. Additionally, 
a random classifier, giving a uniform pseudo-random class  
(Pr{HA} = Pr{LA} = 0.5), served as a benchmark41. Since 
we were interested in the overall correct classification with-
out distinguishing between the different classes, the accuracy 
was selected as evaluation metric42. As long as the classes are 
approximatively balanced, the accuracy can be considered a  

Table 1. Class distribution. Distribution 
of the two classes (High arousal and Low 
arousal) for each classification problem.

Classification 
problem

# High 
arousal (%)

#Low 
arousal (%)

Ac_Im 1294 (51%) 1243 (49%)

Ac_So 1223 (49%) 1270 (51%)

Ps_Im 1215 (48%) 1305 (52%)

Ps_So 1279 (49%) 1302 (51%)
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Figure 1. Spectral features. Scalp distribution of the r2 coefficients (normalized to the total score and expressed as percentage) grouped 
for tasks and stimulus type. (a) Active task: left Image, right Sound; (b) Passive task: left Image, right Sound.

straightforward and robust metric to assess the classifier  
performance (see ML Introduction in the Extended data32).

The accuracy of the classifiers was measured, repeating 10 
times for a 10 fold cross validation scheme. The feature selec-
tion was computed within each cross validation step, to avoid  
overfitting and reduce biased results43.

For each group (Ac_Im, Ac_So, Ps_Im, Ps_So) and each  
feature type (static spectral, static temporal), the classifica-
tion produced a 10 × 4 matrix containing the mean accuracies 
(one for each of the 10-fold cross-validation repetitions) of each  
classifier.

Features for dynamic classification were reduced and classi-
fied similarly to the static ones. For each temporal segment, 
the associated features were reduced by means of the biserial 
correlation coefficient (threshold at 90%) and the classifiers 
(SVM, kNN, LDA and random) were evaluated using a  
10-fold cross-validation scheme – repeated 10 times.

For each group, each feature type (dynamic spectral, 
dynamic temporal), each temporal segment and each  
classifier, the classification produced 10 sequences of mean  

accuracies { }125

1i i
ACC

=
 – one for each repetition of the 10-fold  

cross-validation scheme.

Data analysis
The syntax in MATLAB used for all analyses is available 
on GitHub along with the instructions on how to use it (see  
Software availability)44. The software can also be used with the  
open-source program Octave.

Statistical analysis
The results of the static classifications were compared against 
the benchmark classifier by means of a two-sample t-test  
(right tail).

The results of dynamic classifications were compared follow-
ing a segment-by-segment approach. For each group, the accu-
racy sequences of the dynamic classifiers (SVM, kNN and 
LDA) were compared with the benchmark accuracy sequence. 

Each sample k
iACC , with k = {SVM, kNN, LDA}, was tested  

against Random
iACC  by means of two-sample t-tests (right tail). The 

corresponding p-value sequences { }125

1
k
i i

p =
 were Bonferroni-Holm  

corrected for multiple comparisons. Finally, the best accuracy 
point was detected as the left extreme of the temporal window  
corresponding to the highest significant accuracy.

Results
Static approach
In Figure 1 and Figure 2, the scalp distributions of r2 coef-
ficients for each binary static classification problem, grouped 
for feature (spectral, temporal) and groups (Ps_Im, Ps_So,  
Ac_Im, Ac_So), are shown.

The temporal feature gave the most consistent topographical  
pattern, showing that the regions that best differentiate between 
high vs low stimuli (auditory and visual) were located over 
the central-parietal electrodes, whereas a more diffuse pattern  
in the scalp topography emerged for the spectral features.

In Figure 3 and Figure 4, box plots of the accuracies of static 
temporal and spectral classifications, grouped for condition, 
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Figure 2. Temporal features. Scalp distribution of the r2 coefficients (normalized to the total score and expressed as percentage), grouped 
for tasks and stimulus type. (a) Active task: left Image, right Sound; (b) Passive task: left Image, right Sound.

Figure 3. Box-plots of the accuracies of the static spectral classifications. From left: Active Image (Ac_Im), Active Sound (Ac_So), 
Passive Image (Ps_Im) and Passive Sound (Ps_So).
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Figure 4. Box-plots of the accuracies of the static temporal classifications. From left: Active Image (Ac_Im), Active Sound (Ac_So), 
Passive Image (Ps_Im) and Passive Sound (Ps_So).

are shown. Note that SVM accuracies (the 2nd boxplot from 
the left) are always shown as lines because the accuracies were  
constant within each cross-validation step (see also Table 2,  
Table 3 and Table 4).

Note that all the accuracies refer to the same static classifica-
tion problem (high arousal vs low arousal), performed using 
different classifiers (SVM, LDA, kNN) and features (spectral,  
temporal), on different groups (Ps_Im, Ps_So, Ac_Im,  
Ac_So).

Using spectral features, in only two groups some classifiers  
showed an accuracy greater than the benchmark. In the 
Ac_So group, ACC

SVM
 = 50.9% (t(18)=2.371, p=0.015) and 

ACC
kNN

 = 50.9% (t(18)=1.828, p=0.042), while for Ps_Im,  
ACC

LDA
 = 51.4% (t(18)=4.667, p<0.001) and ACC

SVM
 = 51.8% 

(t(18)=9.513, p<0.001).

Using temporal features, in all the groups some classifiers  
showed an accuracy greater than the benchmark. In the Ac_So 
group, ACC

SVM
 = 50.9% (t(18)=2.907, p=0.005) and ACC

kNN
 = 51% 

(t(18)=2.793, p=0.006) and in the Ps_So group, AAC
SVM

 = 50.4% 
(t(18)=9.493, p<0.001).

Dynamic approach
In Figure 5–Figure 11, the results of the significant dynamic 
classifications are shown. In the upper section of the plots, the  
mean (bold line) and the standard deviation (shaded) of the  
accuracy sequence are shown. In the lower section of the plot 
(black dashed line), the Bonferroni-Holm corrected p-values 

sequence, discretized (as a stair graph) as significant (p<0.05) or  
non-significant (p>0.05) is shown.

Note that all the accuracy plots refer to the same dynamic  
classification problem (high arousal vs low arousal), performed 
using different classifiers (SVM, LDA, kNN) and features  
on different groups. Spectral: Ac_Im (Figure 5), Ac_So  
(Figure 6), Ps_Im (Figure 7) and Ps_So (Figure 8); temporal:  
Ac_So (Figure 9), Ps_Im (Figure 10) and Ps_So (Figure 11).

Using spectral features, in all the groups some classifiers  
showed an accuracy greater than the benchmark. In the  
Ac_Im group, ACC

LDA
 = 51.97% @ t = 0.080 s (t(18)=6.291, 

p<0.001) and ACC
SVM

 = 51.07% @ t = 0.416 s (t(18)=6.531, 
p<0.001). In the Ac_So group, ACC

LDA
 = 53.04% @ t = 0.332 s  

(t(18)=8.583, p<0.001) and ACC
SVM

 = 51.16% @ t = 0.146 s 
(t(18)=8.612, p<0.001). In the Ps_Im group, ACC

LDA
 = 53.12% 

@ t = 0.156 s (t(18)=6.372, p=0.000) and ACC
SVM

 = 51.83% 
@ t = 0.140 s (t(18)=6.668, p<0.001). In the Ps_So group, 
ACC

SVM
 = 50.62% @ t = 0.024 s (t(18)=5.236, p=0.003) and  

ACC
kNN

 = 51.41% @ t = 0.476 s (t(18)=4.307, p=0.026).

Using temporal features, in only three groups did some clas-
sifiers show an accuracy greater than the benchmark. In the 
Ac_So group, ACC

SVM
 = 63.80% @ t = 0.100 s (t(18)=6.113, 

p=0.001). In the Ps_Im group, ACC
LDA

 = 63.68% @ t = 0.024 s 
(t(18)=12.108, p<0.001) and ACC

SVM
 = 51.43% @ t = 0.084 s 

(t(18)=4.881, p=0.008). In the Ps_So group, ACC
LDA

 = 64.30% 
@ t = 0.0276 s (t(18)=11.092, p<0.001) and ACC

kNN
 = 63.70% @  

t = 0.480 s (t(18)=16.621, p<0.001).
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Table 2. Static features. Ordered 
accuracies grouped for classifier, feature 
and group.

Classifier Accuracy Feature Group

SVM 51.80% Spectral Ps_Im

LDA 51.40% Spectral Ps_Im

kNN 51% Temporal Ac_So

kNN 50.90% Spectral Ac_So

SVM 50.90% Spectral Ac_So

SVM 50.90% Temporal Ac_So

SVM 50.40% Temporal Ps_So

SVM, support vector machine; LDA, linear 
discriminant analysis; kNN, k-nearest neighbour.

Table 3. Mean (M) and standard deviations (SD) of the accuracies of the static spectral 
classifications. Active Image (Ac_Im), Active Sound (Ac_So), Passive Image (Ps_Im) and Passive 
Sound (Ps_So).

Group LDA SVM kNN Random

Ac_Im M=0.496, SD=0.007 M=0.510, SD=0.000 M=0.500, SD=0.010 M=0.505, SD=0.011

Ac_So M=0.492, SD=0.004 M=0.509, SD=0.000 M=0.509, SD=0.007 M=0.503, SD=0.009

Ps_Im M=0.514, SD=0.010 M=0.518, SD=0.000 M=0.496, SD=0.010 M=0.495, SD=0.008

Ps_So M=0.488, SD=0.005 M=0.504, SD=0.000 M=0.493, SD=0.007 M=0.503, SD=0.013

SVM, support vector machine; LDA, linear discriminant analysis; kNN, k-nearest neighbour.

Table 4. Mean (M) and standard deviations (SD) of the accuracies of the static temporal 
classifications. Active Image (Ac_Im), Active Sound (Ac_So), Passive Image (Ps_Im) and Passive 
Sound (Ps_So).

Group LDA SVM kNN Random

Ac_Im M=0.492, SD=0.010 M=0.510, SD=0.000 M=0.500, SD=0.008 M=0.498, SD=0.007

Ac_So M=0.501, SD=0.007 M=0.509, SD=0.000 M=0.510, SD=0.006 M=0.498, SD=0.012

Ps_Im M=0.500, SD=0.012 M=0.518, SD=0.000 M=0.492, SD=0.005 M=0.499, SD=0.006

Ps_So M=0.499, SD=0.008 M=0.504, SD=0.000 M=0.492, SD=0.006 M=0.498, SD=0.008

SVM, support vector machine; LDA, linear discriminant analysis; kNN, k-nearest neighbour.

Table 5 reports the accuracies for dynamic features, ordered in 
descending order and grouped for classifier, feature group and 
time.

Discussion
The aim of the study was to provide new methodologi-
cal insights regarding machine learning approaches for the  
classification of anticipatory emotion-related EEG signals, 
by testing the performance of different classifiers on different  
features.

From the ISIs (i.e. the 1000 ms long window preceding 
each stimulus onset), we extracted two kinds of “static”  
features, namely spectral and temporal, the most commonly used  
features in the field of emotion recognition23,24. As spectral  
features, we used the beta-over-alpha and the beta-over-theta 
ratio, whereas for the temporal feature we concatenated the  
decimated EEG values.

Additionally, we extracted the temporal sequences of both 
static spectral and temporal features, using a 500 ms long 
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Figure 5. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ac_Im group for LDA (a) and SVM (b) classifiers.

Figure 7. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ps_Im group for LDA (a) and SVM (b) classifiers.

Figure 6. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ac_So group for LDA (a) and SVM (b) classifiers.
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Figure 9. Temporal dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ac_So group for LDA classifier.

Figure 8. Spectral dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ac_So group for SVM (a) and kNN (b) classifiers.

window moving along the ISI to build dynamic spectral and  
temporal features, respectively. This step is crucial for our work  
since, considering the temporal resolution of the EEG, an efficient 
classification should take into account the temporal dimen-
sion, to provide information about when the difference between  
two conditions are maximally expressed and therefore classified.

We trained and tested three different classifiers (LDA, SVM, 
kNN, the most commonly used in the field of emotion  
recognition23,24) following both static and dynamic approaches, 
comparing their accuracies against a random classifier that  
served as benchmark.

Our goal was to identify the best combination of approach (static 
vs dynamic), classifier (LDA vs SVM vs kNN) and feature 

(spectral vs temporal) to classify the arousal level (high vs low) 
of 56 auditory/visual stimuli. The stimuli, extracted from two 
standardized datasets (NIMSTIM45 and IADS34), for visual and 
auditory stimuli, respectively) were presented in a randomized 
order, triggered by a TrueRNG™ hardware random number  
generator.

Considering the number of groups (four), the number of clas-
sifiers (three) and the number of feature types (two), each 
classification (static or dynamic) produced a total of 24  
accuracies, whose significances were statistically tested (using a 
two-sample t-test and the benchmark’s accuracies).

Within the nine significant accuracies obtained using a static 
approach, the classifier that obtained the highest number of 
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Figure 11. Temporal dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ps_So group for LDA (a) and kNN (b) classifiers.

Figure 10. Temporal dynamic features. Accuracy (mean value, coloured line; standard deviation, shaded line) and p-values (black dotted 
line) in Ps_Im group for LDA (a), SVM (b) and kNN (c) classifiers.

(51.8%), followed by LDA with spectral features (51.4%)  
and kNN with temporal features (51%).

Within the 13 significant accuracies obtained using a dynamic 
approach, the classifier that obtained the highest number of 

accuracies was the SVM (six significant accuracies), followed 
by kNN (two significant accuracies) and LDA (one significant 
accuracy). The most frequent feature was the temporal  
(five significant accuracies). Finally, the best (static) feature-
classifier combination was the SVM with spectral features 
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Table 5. Dynamic features. Ordered accuracies 
grouped for classifier, feature and group.

Classifier Accuracy Time [s] Group Feature

SVM 63.80% 0.1 Ac_So Temporal

kNN 63.70% 0.048 Ps_So Temporal

LDA 63.68% 0.024 Ps_Im Temporal

LDA 63.30% 0.0276 Ps_So Temporal

LDA 53.12% 0.156 Ps_Im Spectral

LDA 53.04% 0.3332 Ac_So Spectral

LDA 51.97% 0.08 Ac_Im Spectral

SVM 51.83% 0.14 Ps_Im Spectral

SVM 51.43% 0.084 Ps_Im Temporal

kNN 51.41% 0.476 Ps_So Spectral

SVM 51.16% 0.146 Ac_So Spectral

SVM 51.07% 0.416 Ac_Im Spectral

SVM 50.62% 0.024 Ps_So Spectral

SVM, support vector machine; LDA, linear discriminant analysis; 
kNN, k-nearest neighbour.

More importantly, the combination of SVM with the dynamic  
temporal feature produced the best classification performance. 
This finding is particularly relevant, considering the applica-
tion of EEG in cognitive science. In fact, due to its high tempo-
ral resolution, EEG is often applied to investigate the timing  
of neural processes in relation to behavioural performance.

Our results therefore suggest that, in order to best classify emo-
tions based on electrophysiological brain activity, the temporal 
dynamic of the EEG signal should be taken into account with 
a dynamic classifier. In fact, by including also time evolution 
of the feature in the machine learning model, it is possible to  
infer when two different conditions maximally diverge, allow-
ing possible interpretation of the timing of the cognitive  
processes and the behaviour of the underlying neural substrate.

Finally, the main contribution of our results for the scientific 
community is that they provide a methodological advance-
ment that is generally valid both for the investigation of emotion 
based on a machine learning approach with EEG signals and  
also for the investigation of preparatory brain activity.

Study limitations
Nevertheless, the present study presents some limitations.

Despite being comparable with previous studies, the obtained 
accuracy is lower than those obtained with more complex clas-
sifiers, such as those based on Convolutional Neural Networks 
(CNNs). For example, feeding temporal features into a CNN  
classifier, some authors reported accuracies up to 86.5%47, 
while others reported accuracies up 98.9% by training a CNN  
classifier with spectral features48.

Additionally, the evaluation of the proposed classifiers is based 
on the accuracy, that can be still considered robust because of 
the class balance within each dataset. However, by consider-
ing other metrics (such as the MCC, the F-score, the Cohen’s 
kappa) or analysing the confusion matrices, the misclassifications  
could be more deeply analysed and, therefore, the classifiers  
could be more effectively tuned to an optimal point.

Finally, the discretization of the stimuli into two classes only 
(low and high) instead of multiple ones (e.g., low, medium, 
high) lowered the training/test computational costs but could 
represent a sub-optimal solution in terms of classification  
accuracies. By adding multiple classes, that is by discretizing the 

accuracies was the SVM (six significant accuracies), followed 
by LDA (four significant accuracies) and kNN (three signifi-
cant accuracies). The most frequent feature was the spectral  
(eight significant accuracies). Finally, the best (dynamic)  
feature-classifier combination was the SVM with temporal  
features (63.8%), followed by kNN with temporal features 
(63.70%) and LDA with temporal features (63.68%). Spectral 
features produced only the 5th highest accuracy (53.12% with 
LDA). The three best accuracies were all within the first 100ms 
of the ISI, although a non-significant Spearman’s correlation  
between accuracy and time was observed (r=-0.308, p=0.306).

Table 6, summarises the three best (in terms of accu-
racy) classifier/features combinations for both the static and  
dynamic approaches.

Our results show that globally the SVM presents the best 
accuracy, independent from feature type (temporal or spec-
tral). This is in line with previous studies were SVM outper-
formed other classifiers such as NN and Random Forests46. 

Table 6. Best classifier/features combinations for static and 
dynamic approach.

Static classification Dynamic classification

Classifier Features Accuracy Classifier Features Accuracy

SVM Spectral 51.8% SVM Temporal 63.87% 

LDA Spectral 51.4% kNN Temporal 63.70% 

kNN Temporal 51.0% LDA Temporal 53.12%
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stimuli into finer arousal levels, the accuracy could be boosted, 
at the cost of lowering the number of available instances per  
class and increasing the chance of overfitting the models.
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nearest neighbor classifiers for the classification of EEG signals? Why not RNNs and 
multilayer perceptron. 
 
Could you please add the arousal score? How you have divided into low-arousal and high-
arousal. Why not three classes as low arousal vs. medium arousal vs. high arousal. Please 
clarify. 
 

2. 

The cohen kappa score, Mathews correlation coefficients, F score values need to be 
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Recently, the rhythm-specific deep CNN is successful for the classification of emotions using 
EEG signals. Could you compare with CNN-based methods? 
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The advantages and disadvantages of your work must be written.5. 
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and k-nearest neighbor classifiers for the classification of EEG signals? Why not RNNs 
and multilayer perceptron.

Reply: According to the literature (ref. 19-20), LDA, SVM and kNN are the most 
commonly used (79.3% and 84% overall, respectively) classifiers in the Emotion 
recognition Field. A more recent review (ref. 53) partially confirmed this, showing that 
LDA, SVM and kNN are overall used 44.44% of the times. In contrast, neural‑network-
based classifiers (e.g. CNN, MLP-BP, ANN) are used only 3.17% (ref. 19), 15.5% (ref. 20) 
and 5.56% (ref. 53) of the times. In addition to their popularity, LDA SVM and kNN were 
selected as representative of 3 different families, namely parametric, discriminative 
and non-parametric classifiers.

Could you please add the arousal score? How you have divided into low-arousal and 
high-arousal. Why not three classes as low arousal vs. medium arousal vs. high 
arousal. Please clarify.

1. 

Reply: Both the image and sounds were discretized into low and high arousal as those 
with a SAM score respectively lower and higher than 5. We chose a binary 
classification since it is associated to lower computational costs than the multiclass 
alternatives. Multiclass classification could produce different (and probably better) 
results, at the cost of lowering the number of available instances per class. We added 
this consideration in the study limitations.

The cohen kappa score, Mathews correlation coefficients, F score values need to be 
evaluated.

1. 

Reply: As evaluation metric, we chose the accuracy since the two classes were 
approximatively balanced (we reported in Table 1 the class distributions) and we were 
mainly interested in the overall correct classification (with equal weight on high and 
low arousal). We agree that additional metrics (that are mandatory for unbalanced 
dataset) would be very informative also for balanced datasets, providing, e.g., useful 
insights to which class is better classified. We added this consideration in the study 
limitations.

Recently, the rhythm-specific deep CNN is successful for the classification of emotions 
using EEG signals. Could you compare with CNN-based methods?

1. 

Reply: In the discussions we compared our results with two studies based on CNN 
classifiers and we identify that

The advantages and disadvantages of your work must be written.1. 
Reply: In the discussions we added the paragraph “Study limitations”.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 14 September 2021

https://doi.org/10.5256/f1000research.24487.r92737

© 2021 Halim Z. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

 
Page 18 of 21

F1000Research 2021, 9:173 Last updated: 31 MAR 2022

https://doi.org/10.5256/f1000research.24487.r92737
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Zahid Halim  
GIK Institute of Engineering Sciences and Technology, Swabi, Khyber Pakhtunkhwa, 23640, 
Pakistan 

The paper presents an interesting approach using ML on EEG data for brain activity. Following 
issues need to be addressed.

Quantify your results in the abstract. 
 

1. 

Add a gap analysis section in your introduction and also mention the research questions. 
 

2. 

Fig. 1 seems generic, please add steps specific to your solution. Just a suggestion. 
 

3. 

Summarize your key findings in a table in the discussion section. 
 

4. 

Following references are missing
On Identification of Driving-Induced Stress Using Electroencephalogram Signals: A 
Framework Based On Wearable Safety-Critical Scheme and Machine Learning

1. 

A machine learning-based investigation utilizing the in-text features for the 
identification of dominant emotion in an email

2. 

Imagined character recognition through EEG signals using deep convolutional neural 
network

3. 

Investigating the use of pretrained convolutional neural network on cross-subject 
and cross-dataset EEG emotion recognition

4. 

Cross-subject multimodal emotion recognition based on hybrid fusion5. 
A novel derivative-based classification method for hyperspectral data processing6. 

5. 

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Partly

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Partly
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Quantify your results in the abstract.1. 
Reply: We added the accuracies of the 3 best classifier-feature combinations for both 
the static and dynamic classifiers in the abstract.

Add a gap analysis section in your introduction and also mention the research 
questions.

1. 

Reply: We split the past introduction into two different sections: introduction and 
state of the art. The introduction describes the theory of the emotion, the brain 
anticipatory activity, the physiological correlated of the emotions and introduce the 
emotion recognition as a ML approach. The state of the art summarizes previous 
works on the emotion recognition, underling their characteristics (in terms of chosen 
features/classifiers and obtained performances), as well as identify the limits (i.e. 
performances highly variable depending from the feature/classifier combination). 
Finally, it describes the aims of the present work. We hope now both the limits in the 
literature and the aim of the present study are clearer.

Fig. 1 seems generic, please add steps specific to your solution. Just a suggestion.1. 
Reply: This paper re-analysed previously collected data, whose details can be found in 
the corresponding article (ref. 37). Fig. 1 graphically summarised the experimental 
task of (ref. 37). We agree that, probably, it is not such informative since interest 
readers can look at (ref. 37) for all the details. So, we removed it.

Summarize your key findings in a table in the discussion section.1. 
Reply: We added the table 5 to summarise the best 3 classifier/features combinations 
for both the static and dynamic approaches.

Following references are missing
On Identification of Driving-Induced Stress Using Electroencephalogram 
Signals: A Framework Based on Wearable Safety-Critical Scheme and Machine 

1. 
1. 
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Learning
A machine learning-based investigation utilizing the in-text features for the 
identification of dominant emotion in an email

2. 

Imagined character recognition through EEG signals using deep convolutional 
neural network

3. 

Investigating the use of pretrained convolutional neural network on cross-
subject and cross-dataset EEG emotion recognition

4. 

Cross-subject multimodal emotion recognition based on hybrid fusion5. 
A novel derivative-based classification method for hyperspectral data 
processing

6. 

Reply: We added the suggested references: (1), (2), (3), (5) and (6) in the introduction, 
while (4) in the discussion.  
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