Background: In this paper, data from two studies relative to the relationship between the electroencephalogram (EEG) activities of two isolated and physically separated subjects were re-analyzed using machine-learning algorithms. The first dataset comprises the data of 25 pairs of participants where one member of each pair was stimulated with a visual and an auditory 500 Hz signals of 1 second duration. The second dataset consisted of the data of 20 pairs of participants where one member of each pair received visual and auditory stimulation lasting 1 second duration with on-off modulation at 10, 12, and 14 Hz. Methods and Results: Applying a 'linear discriminant classifier' to the first dataset, it was possible to correctly classify 50.74% of the EEG activity of non-stimulated participants, correlated to the remote sensorial stimulation of the distant partner. In the second dataset, the percentage of correctly classified EEG activity in the non-stimulated partners was 51.17%, 50.45% and 51.91%, respectively, for the 10, 12, and 14 Hz stimulations, with respect the condition of no stimulation in the distant partner. Conclusions: The analysis of EEG activity using machine-learning algorithms has produced advances in the study of the connection between the EEG activities of the stimulated partner and the isolated distant partner, opening new insight into the possibility to devise practical application for non-conventional "mental telecommunications" between physically and sensorially separated participants.

EEG correlation at a distance: a re-analysis of two studies using a machine learning approach., 2019-03-29.

EEG correlation at a distance: a re-analysis of two studies using a machine learning approach.

Bilucaglia, M.
Formal Analysis
;
2019-03-29

Abstract

Background: In this paper, data from two studies relative to the relationship between the electroencephalogram (EEG) activities of two isolated and physically separated subjects were re-analyzed using machine-learning algorithms. The first dataset comprises the data of 25 pairs of participants where one member of each pair was stimulated with a visual and an auditory 500 Hz signals of 1 second duration. The second dataset consisted of the data of 20 pairs of participants where one member of each pair received visual and auditory stimulation lasting 1 second duration with on-off modulation at 10, 12, and 14 Hz. Methods and Results: Applying a 'linear discriminant classifier' to the first dataset, it was possible to correctly classify 50.74% of the EEG activity of non-stimulated participants, correlated to the remote sensorial stimulation of the distant partner. In the second dataset, the percentage of correctly classified EEG activity in the non-stimulated partners was 51.17%, 50.45% and 51.91%, respectively, for the 10, 12, and 14 Hz stimulations, with respect the condition of no stimulation in the distant partner. Conclusions: The analysis of EEG activity using machine-learning algorithms has produced advances in the study of the connection between the EEG activities of the stimulated partner and the isolated distant partner, opening new insight into the possibility to devise practical application for non-conventional "mental telecommunications" between physically and sensorially separated participants.
Inglese
29-mar-2019
F1000 Research Ltd.
2019
8
43
United Kingdom
internazionale
esperti non anonimi
senza ISI Impact Factor
Online
Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
5
File in questo prodotto:
File Dimensione Formato  
2019-F1000research.pdf

Open Access

Descrizione: Full text
Tipologia: Documento in Post-print
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10808/47946
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact