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Abstract. Active inference helps us simulate adaptive behavior and
decision-making in biological and artificial agents. Building on our previ-
ous work exploring the relationship between active inference, well-being,
resilience, and sustainability, we present a computational model of an
agent learning sustainable resource management strategies in both static
and dynamic environments. The agent’s behavior emerges from optimiz-
ing its own well-being, represented by prior preferences, subject to beliefs
about environmental dynamics. In a static environment, the agent learns
to consistently consume resources to satisfy its needs. In a dynamic en-
vironment where resources deplete and replenish based on the agent’s
actions, the agent adapts its behavior to balance immediate needs with
long-term resource availability. This demonstrates how active inference
can give rise to sustainable and resilient behaviors in the face of changing
environmental conditions. We discuss the implications of our model, its
limitations, and suggest future directions for integrating more complex
agent-environment interactions. Our work highlights active inference’s
potential for understanding and shaping sustainable behaviors.

Keywords: Active Inference · Sustainability · Generative model.

1 Introduction

For the past decade, we have shown that the Free Energy Principle can serve
as a foundational concept in predicting and modeling the present and future
behaviors of a system. Under this principle, the behavior of a system aims to
maintain equilibrium and sustaining life through the minimization of free energy
[Parr et al., 2022, Parr and Friston, 2019, Stubbs and Friston, 2024]. Systems,
particularly biological ones, act to minimize the difference between their repre-
sentation of the world, encoded in internal states and the external environment.
By reducing this discrepancy, as quantified by free energy, the system achieves a
state of balance and effectively adapts to its surroundings [Friston et al., 2017,
2023, Parr et al., 2023]. We can thus understand it as a measure of uncertainty or
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surprise, used such that agents are driven to more predictable and stable states.
Using free energy, systems can slowly make adjustments and adaptations, and
thus maintain homeostasis in a changing environment [Ramstead et al., 2018,
Kirchhoff et al., 2018, Karl, 2012, Da Costa et al., 2023, Pezzulo et al., 2024].
This modeling approach has been used for various types of systems, from neu-
ral processes and cognitive functions to broader ecological and social dynamics
[Friston et al., 2010, Da Costa et al., 2024, Solymosi and Schulkin, 2024, Al-
barracin et al., 2024a, Matsumura et al., 2023, Montgomery and Hipólito, 2023,
Ramstead et al., 2020, Pezzulo et al., 2024].

While it is a widely held assumption that all systems will invariably minimize
free energy (FE), this is not always a simple linear process. To understand this,
we have to consider the system’s goals and constraints. These goals can some-
times result in behaviors that do not align perfectly with immediate free energy
minimization. This is partly what can make a system, given a specific scale of
measurement, somewhat unsustainable. Not all systems are capable of effectively
minimizing free energy. They may indeed have constraints in their structure or
function. Think of certain pathological conditions impeding a system’s ability
to minimize free energy efficiently. These conditions can lead to maladaptive
behaviors or states that deviate significantly from what would be predicted by
the FEP. For example, constraints in structure or function: in neurological dis-
orders such as schizophrenia, the brain’s ability to minimize free energy can be
impaired. As it distorts connectivity, it may also alter perceptions and thoughts
- no longer fully related to the external world. Someone with Schizophrenia can
struggle to reduce uncertainty about its environment, resulting in maladaptive
behaviors [Friston et al., 2016, Harikumar et al., 2023, Zarghami et al., 2023].

Free energy minimization can also be influenced by external perturbations
and environmental factors. The very nature of the environment is unpredictable
dynamics, which temporarily disrupt a system’s meta-stable states. The system
transiently increases free energy as it adapts to new conditions. Albarracin et al.
(2024) explore how systems must deal with external shocks and stresses (pertur-
bations) to maintain sustainability, resilience and well-being. They suggest that
resilience means absorbing shocks and stresses from the environment, while sus-
tainability requires enduring capacity to stay resilient, but without causing a loss
of resilience of the environment super-system. In this paradigm, external pertur-
bations are central to developing better strategies to maintain well-being across
system strata. Since these perturbations can be unpredictable, the temporality
of strategies can change. Long-term strategies can weather slight increases in free
energy temporarily to achieve more stable and favorable conditions in the future.
This is the case we will be testing and presenting in this paper: long-term strate-
gies involving temporary increases in free energy. When an agent learns that it
does not have to satisfy its greed immediately, even if it is very hungry, because
the aim is to maintain a balance between itself and the environment (such as a
room with food) over time, the agent can resist the urge for immediate gratifi-
cation and managing its resources judiciously. And thus, the agent can endure
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short-term discomfort (increased free energy) to ensure long-term stability and
sustainability.

To do so, we test out two cases, detailed in the Methods section. Case 1
acts as a baseline scenario, and involves a static environment where the agent
decides whether to eat food or not. In Case 2, the environment is dynamic, and
the agent must learn to moderate its consumption behavior over time. Food
increases when the agent does not eat, introducing a dynamic aspect to the en-
vironment. This study is important for two reasons. First, we must understand
adaptive strategies to properly predict when systems will achieve long-term sta-
bility and sustainability. It will help us predict when systems choose to balance
short-term needs with long-term goals. But this will also help us identify po-
tential vulnerabilities, such that we can identify areas where intervention may
be needed to prevent collapse or dysfunction. The FEP dictates that behavior
should align with minimizing free energy. But we have to better understand the
variability in paths where this principle isn’t consistently upheld at a given scale
of measurement.

2 Methods

2.1 Case 1: Static environment

We build this simulation using the PyMDP package, by Conor Heins and col-
leagues [Heins et al., 2022]. In Case 1, we consider a static environment where
the agent’s goal is to maintain satiety by deciding whether to eat the available
food. The generative model for Case 1 (detailed in Table 1, and visualized in
figure 1) includes hidden states for food availability and agent satiety, observa-
tions that directly correspond to these hidden states, and actions to eat or not
eat. The Likelihood Matrix (A) assumes an identity mapping between hidden
states and observations, meaning that the agent directly observes the true states
of food availability and its own satiety. Mathematically, this is represented as
P (ot | st,A) = Cat(A), where A is an identity matrix. This means the proba-
bility of an observation given a state is 1 if they correspond and 0 otherwise:

P (ot = i | st = j) =

{
1 if i = j

0 if i ̸= j

The agent performs variational inference to optimize an approximate poste-
rior Q(st) over hidden states at each timestep, using the expected log likelihood
of observations E[logP (ot | st)] = Q(st)

T logA.
The Transition Matrix (B) specifies that the "eat" action leads to satiety

when food is present, while food remains constantly available regardless of the
agent’s actions. The "don’t eat" action leads to hunger.The transition likelihood
B is represented as a set of matrices B[f ], one for each hidden state factor f ,
with dimensions Sf ×Sf ×Uf , where Sf is the number of levels for factor f and
Uf is the number of control states or actions for that factor.
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Fig. 1: The agent’s generative model encodes beliefs about the causal structure of
the environment and how its actions affect the state of the world. The true state
of the environment is represented by two hidden state factors - the availability
of food (s1) and the agent’s satiety (s2). The prior preference C matrix specifies
the agent’s innate drives or goals, in this case a strong preference for being
satiated. The starting conditions are specified by the initial state distribution,
D. Here, food is initially present but the agent is not satiated. The agent has
two observation modalities - the presence of food (o1) and its own satiety level
(o2). The agent can select between two actions at each time step - "eat" or "do
not eat". We have two hidden state factors: food left and satiety. For the "do
not eat" action, for Case 1 the B matrix is an identity matrix, as this action
does not change the state, while for Case 2 it changes, since not eating leads to
an increase in available food. When the agent chooses the "eat" action, if food
is present, the states will transition by reducing "food left" by 1 (down to a
minimum of 0) state and by increasing "satiety" by 1 (to a maximum of 2).
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The entry B[f ][i, j, k] represents the probability of transitioning from state
j to state i for factor f , given action k: P (sft+1 = i | sft = j, uf

t = k). In this
case, the "eat" action (k = 0) would have a high probability of leading to the
"satiated" state (i) when the current state is "food available" (j), while the
"don’t eat" action (k = 1) would likely lead to the "hungry" state.

Importantly, the transition matrices B[f ] are assumed to be conditionally
independent across factors, meaning that the next state of factor f only depends
on the current state and action for that factor, and not on the states of other
factors: P (sft+1 | sft , u

f
t ) = P (sft+1 | st, ut). This simplifies the computation of

the joint transition probability.
The Preference Vector (C) encodes a strong preference to observe satiation

and food present. The agent’s goals and preferences are represented as a prior
distribution over observations, P (o1:T ). The C vector encodes these preferences
as a categorical distribution, where higher values correspond to preferred obser-
vations. The agent aims to maximize the probability of sampling these preferred
observations.

The Initial State Distribution (D) is not specified, so that it is a uniform
distribution where each state has an equal probability of being the initial state.
In the PyMDP framework, the initial state distribution is represented as a cate-
gorical distribution over hidden states at the first timestep, P (s1 | D) = Cat(D).
If not specified, it defaults to a uniform distribution, assigning equal probability
to all possible initial states.

During the generative process, the agent interacts with the environment, and
its actions affect the state transitions according to the generative process. If the
agent chooses not to eat, the state of the environment remains unchanged. If
the agent chooses to eat and food is present, the agent becomes satiated, but
food remains available due to the static nature of the environment. We then
instantiate the simulation loop. First, the agent performs state inference based
on the current observation, evaluating policies to maximize expected free energy,
and selecting an action that minimizes free energy and aligns with its preferences.
The selected action is applied to the environment, resulting in state transitions
and new observations, and the loop continues with the agent updating its beliefs,
inferring policies, and selecting actions to achieve its goals. In the extension to
Case 1, we introduce variations to test the agent’s adaptability. In Case 1.1, we
set incorrect A and B matrices, introducing flawed perceptions and beliefs about
state transitions. This extension is intended for us to validate that the behavior
of the agent is in fact predicated on its appropriate appraisal of the environment.

2.2 Case 2: Dynamic Environment

In Case 2 (laid out in table 2), we extend our model to a dynamic environment
where the agent’s actions have consequences on the availability of food resources
over time. The goal is to study how the agent adopts a sustainable behavior,
balancing its immediate need for satiety with the long-term availability of food.
The generative model for Case 2 (Figure 1) builds upon the previous model by
introducing more granularity in the states and observations, allowing for a wider
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Component Values Description

Hidden States Food availability: present
(1), absent (0)

Represents the true state of
food availability in the envi-
ronment

Agent satiety: hungry (0),
satiated (1)

Represents the true state of
the agent’s satiety

Observations Observed food availability Corresponds directly to the
food availability state

Agent’s perceived satiety Corresponds directly to the
agent satiety state

Actions Eat (1), Don’t Eat (0) The actions available to the
agent

Likelihood Matrix (A) Identity mapping Assumes the agent directly
observes the true states

Transition Matrix (B) "Eat" (1) leads to satiety (1)
when food is present (1)

Specifies the state transi-
tions based on the agent’s
actions

"Don’t Eat" (0) leads to
hunger (0)

Preference Vector (C) Strong preference for sati-
ated (1) and food present (1)

Encodes the agent’s goals
and drives its behavior

Initial State Distribution
(D) Uniform Distribution Sets the starting conditions

for the simulation
Table 1: Components of the generative model for Case 1

range of behaviors and interactions between the agent and the environment.
Both the observations and hidden states are expanded to have three levels each:
food left (0: none, 1: some, 2: abundant) and satiety (0: not satiated, 1: some-
what satiated, 2: fully satiated). In this model, we assume that the agent directly
observes the true environmental states with some variations across different lev-
els of food availability and satiety. In this dynamic environment, the transitions
depend on both the current state and the action taken by the agent. If the agent
does not eat, food availability increases over time, while if the agent eats, food
availability decreases or remains depleted. For the satiety state, if the agent does
not eat, satiety decreases over time, while if the agent eats, satiety increases. In
Case 2, the preferences are designed to balance between maintaining satiety and
ensuring a sustainable food supply, encouraging the agent to maximize its satiety
while also considering the long-term availability of food resources. Specifically,
the agent has a strong preference for being satiated, while flat preference over
food left. The agent interacts with the dynamic environment over multiple time
steps, updating its beliefs and actions based on the observed states and the
changing dynamics of the environment, and it learns to not eat even if it is not
fully satiated. The agent is initialized with the generative model specified in Case
2, using an extended policy length to plan multiple time steps ahead and antic-
ipate future consequences. In the simulation loop, the environment starts with
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food fully available and the agent being half satisfied. The agent can plan over
multiple time steps (policy length of 3), and thus has the opportunity to bal-
ance immediate consumption with long-term sustainability. The extended policy
length allows the agent to anticipate future states and avoid greedy behavior that
could lead to starvation. The agent’s policies are restricted to ensure consistent
and sustainable actions across all time steps for both observation modalities.

Component Values Description

Hidden States Food left: none (0), some
(1), abundant (2)

Represents the true state of
food availability in the envi-
ronment

Agent satiety: not satiated
(0), somewhat satiated (1),
fully satiated (2)

Represents the true state of
the agent’s satiety

Observations Observed food availability
Corresponds to the food
availability state with some
variability

Agent’s perceived satiety
Corresponds to the agent
satiety state with some vari-
ability

Actions Eat (1), Don’t Eat (0) The actions available to the
agent

Likelihood Matrix (A)
High probability of correct
observations, lower for adja-
cent states

Defines the probability of
observations given the true
hidden states

Transition Matrix (B) “Eat” (1): food left de-
creases, satiety increases

Specifies the state transi-
tions based on the agent’s
actions and current state

“Don’t Eat” (0): food left in-
creases, satiety decreases

Preference Vector (C)

Strong preference for satiety.
Balances maintaining sati-
ety and sustainable food
supply

Encodes the agent’s goals
and drives its behavior

Initial State Distribution
(D) Uniform Distribution Sets the starting conditions

for the simulation

Policy Length 3 time steps
Allows the agent to plan
ahead and consider long-
term effects

Table 2: Components of the generative model for Case 2

In Case 2.1, we extend the dynamic environment setup from Case 2 by in-
troducing a learning mechanism for the agent. The key change is that the agent
now starts with a random B matrix and updates it based on its experiences in
the environment. The agent starts with a random B matrix instead of a prede-
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fined one, which will be updated as the agent interacts with the environment.
The B matrix is initially random, and the agent updates this matrix based on
observed transitions between states. The A matrix remains the same as in Case
2, mapping the hidden states to observations, and the C vector, representing the
agent’s preferences over observations, remains unchanged from Case 2. To learn,
the agent starts with a randomly initialized B matrix, which does not initially
capture the correct state transitions. The random initialization is done using a
Dirichlet distribution to ensure valid probability values. At each time step, the
agent receives observations, infers states, infers policies, and samples actions,
similar to Case 2. After executing an action and receiving the next observation,
the agent updates its B matrix. The agent notes the transition from the previous
state to the current state given the action taken. The B matrix is updated using
a learning rate to adjust the probabilities of the observed transitions. For states
that depend on a single factor, the transition probability is updated directly by
increasing the probability of the observed transition by the learning rate. For
states that depend on two factors (e.g., satiety depends on both food left and
previous satiety), the transition probabilities are updated based on the depen-
dencies specified. After updating, the B matrix is normalized to ensure that the
probabilities sum to 1, maintaining a valid probability distribution. We also in-
troduce several extended case variations for Case 2 (with and without learning)
to explore the agent’s behavior and performance under different conditions. We
test the agent’s robustness by initializing the B matrix with incorrect values set
to very high (1) or very low (0). The agent’s performance is expected to degrade,
demonstrating the importance of accurate transition models, and avoiding iner-
tia. We examine the agent’s behavior when it has different prior preferences by
modifying the C vector to represent a strong preference for food being present.
The agent prioritizes actions that ensure food is present, potentially at the ex-
pense of satiety. We test the agent in an environment where food increases at
a slower rate (0.5 units per step, compared to 1 unit per step previously) when
not eating and decreases at a faster rate (1 unit per step) when eating. Satiety
decreases faster when not eating (0.2 units per step, compared to 1 previously)
and increases at a different rate when eating (0.8 units per step, compared to 1
previously). The agent needs to adapt its strategy to account for these specific
changes in the environment dynamics. Its performance may be lower compared
to Case 2 due to the increased difficulty in balancing food and satiety levels, as
the food depletes more quickly when eating and satiety decreases more rapidly
when not eating. We finally assess the impact of planning horizon on the agent’s
performance by comparing agents with different planning horizons (1 time step
vs. 3 time steps). Agents with a longer planning horizon are expected to perform
better, as they can anticipate future states more effectively and make decisions
that lead to more sustainable resource management.
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3 Results

In Case 1, the agent is in a static environment where food is always available,
and its task is to maintain satiety by deciding whether to eat. The agent consis-
tently chooses to eat at every time step, reflecting its understanding that food
is always available and that eating maximizes its satiety (Appendix, figure 3,
first row). Food availability remains constant throughout the simulation, as ex-
pected in a static environment where food does not deplete (Appendix, figure
3, second row). The agent’s satiety increases as it eats and remains at a high
level, indicating successful learning and adaptation to maintain its internal state
optimally (Appendix, figure 3, third row). This setup demonstrates the agent’s
ability to perform optimally in an environment with constant resources. In Case
1.1, we introduce errors in the A and B matrices to test the agent’s resilience
and adaptability when its internal model does not accurately represent the en-
vironment. The agent’s actions show a more erratic pattern, reflecting confusion
or uncertainty due to the incorrect matrices. Despite the confused matrices, food
availability remains constant as in the standard case (Appendix, figure 4, sec-
ond row). The agent’s satiety fluctuates more compared to the standard case,
indicating that the agent’s ability to maintain a consistent internal state is im-
paired by the incorrect perception and planning models. This case shows how
deviations from accurate environmental models can affect an agent’s behavior
and performance, leading to less optimal decisions. With Case 1 results, we have
shown that the agent has a degree of validity, and that it does in fact show how
the agent reacts to model fitness, and chooses the best actions relative to its own
survival. In Case 2, the environment is dynamic, with food depleting when eaten
and replenishing if not consumed. The agent must balance its eating behavior to
avoid starvation and resource depletion. It is equipped with a strong preference
over satiety = 2, and flat preference over food left (Appendix, figure 5). Over
multiple runs with a policy length of 3 time steps, the agent tends to avoid eat-
ing, leading him to die of starvation (Appendix, figure 6 left), or eats too much,
leading him to death as well (Appendix, figure 6 right) as his food gets depleted.
In Case 2 with learning, the agent starts with a randomly initialized B matrix
and updates it through interactions with the dynamic environment. The agent’s
actions fluctuate regularly between "Eat" and "Do Not Eat," suggesting that it
has learned a strategy to balance its actions, so that it manages to survive the
whole time of the run and keeps satiety between 0 and 1 (Appendix, figure 7).
The survival time plot for each run shows that the agent consistently survives
for the maximum number of time steps after the initial learning phase, indicat-
ing that it quickly learns an effective strategy to avoid starvation and maintain
survival (Figure 2).

Compared to Case 2 without learning, the case with learning shows the
agent’s ability to learn from its interactions with the environment and develop
more effective strategies for survival and resource management. The extended
Case 2 variations explore the agent’s behavior and performance under different
conditions, such as incorrect transition models, altered prior preferences, and
varying planning horizons. With an incorrect B matrix, where the values are set
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Fig. 2: Case 2, showing the survival time of agents with both learning and no
learning when the agent starts with a random B matrix. The survival time plot
for each run averaged over 10 agents, shows that the agents can quickly learn to
survive by acting in a sustainable way.
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to extremes from the start (1 and 0, rather than lower probabilities), the agent
consistently chooses to eat in every time step, leading to suboptimal behavior
and eventual starvation (Appendix, figure 8, left). Under certain conditions, the
agent was unable to learn, being stuck in the inertia of its transitions. But over-
all, with learning enabled, the agent was able to pull itself out of high values
and was able to survive - highlighting the value of plasticity to get out of bad
bootstraps.

In the case of strong preferences on both states (high satiety and high food
left - without learning), the agent initially chooses to eat but then stops eating
as food becomes scarce, demonstrating the influence of strong preferences on the
agent’s actions (Appendix, figure 9, left). This leads the agent to die over most
of its runs quite quickly. With learning enabled (Appendix, figure 9, right), the
agent is able to balance its actions again and can survive longer, balancing its
preferences and the environmental demands.

When the environment rate of change changes (Appendix, figure 10), the
agent’s performance declines compared to the previous case, but learning still
provides a significant advantage. With learning enabled, the agent adapts its
strategy - eating less often to conserve food, maintaining higher average food
levels, and sustaining satiety more effectively. This allows the agent to consis-
tently survive the full run timesteps when learning, while it only survives around
3 timesteps without learning. Although the tougher environment dynamics make
it more challenging, as the agent must plan in a different way and possibly over
longer timescales, the agent demonstrates an impressive ability to adjust its pol-
icy through learning to match the new rate of change in food and satiety levels.
Learning is critical for the agent to find the right balance and survive in this
more complex scenario.

With a policy length of 1, the agent does very poorly without learning, dying
basically after the first step. With learning, it takes the agent a little bit of
time to learn how to survive, but it eventually does. Its actions are a little more
erratic, but it does find a short term strategy (Appendix, figure 11). However,
even with this short term strategy, it is unable to survive for very long, truly
highlighting the need to focus on longer term strategies.

4 Discussion

Our sustainable agent demonstrates how active inference can give rise to sus-
tainable resource management strategies at the level of an individual agent. The
agent’s behavior emerges from the interaction between its model of the world,
prior preferences, and the environmental dynamics. It seeks to optimize for im-
mediate needs (e.g., hunger) and long-term outcomes (e.g., consistent food avail-
ability), learning to balance consumption and resource replenishment to promote
sustainability. Our findings align with our previous formalization of sustainabil-
ity, resilience, and well-being within the active inference framework.

In Case 1, the static environment allowed the agent to exhibit inertia, main-
taining a consistent consumption pattern without considering long-term resource
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availability. While this behavior was adequate for the given context, it lacked
the flexibility needed for sustainable outcomes in more dynamic environments.
Case 2 introduced environmental variability, requiring the agent to demonstrate
elasticity and plasticity. The agent’s ability to adapt its eating habits in response
to changing food availability exemplifies elasticity, as it temporarily endures in-
creases in free energy (i.e., hunger) to ensure long-term stability. The agent’s
capacity to learn and update its model of the world based on new information
reflects plasticity, enhancing its resilience in the face of environmental shifts. The
agent’s adaptive behavior in Case 2 reflects resilience, as it adjusts its actions to
maintain well-being under changing resource availability. The dynamic coupling
between agent and environment in the study of sustainable resource manage-
ment was critical, even at the level of a single agent. In the extended cases, we
can see the issues with inertia, and the possibility for even adaptive agents to
get stuck in difficult policies.

The agent’s actions optimized its own well-being and contributed to the re-
silience of the environment by preventing complete resource depletion. This re-
ciprocal relationship between the agent and its environment is a fundamental
aspect of sustainability, as the generative models of different layers in a hierar-
chical system are inherently linked through niche construction Albarracin et al.
[2024b]. However, the model’s simplicity also reveals its limitations. The single-
agent, single-resource setup does not capture the complex interdependencies and
feedback loops present in real-world systems. Future research should explore
multi-agent scenarios with competing interests and shared resources, as well as
environments with multiple, interconnected resource types and more sophisti-
cated replenishment dynamics. Additionally, the model does not consider the
possibility of permanent resource depletion, which would require conditioning
the environment’s survival on the maintenance of certain values. In the future,
we need to incorporate this aspect to understand the long-term implications of
resource management strategies. To further advance the application of active
inference in sustainable resource management, future work should focus on inte-
grating network theory and dynamical systems theory to model and quantify the
interdependencies between resources and their impact on overall system sustain-
ability. Optimizing precision or learning rates could also help foster the elastic
and plastic resilience necessary for long-term sustainability and abundance. We
would need to explore this avenue further. Our paper presents a proof-of-concept
model demonstrating how active inference can inform sustainable resource man-
agement at the individual level. We consider the relationship between agent and
environment to highlight the importance of resilience, adaptability, and long-
term planning in achieving sustainable outcomes. While the model’s simplicity
limits its direct applicability to real-world systems, it provides a foundation for
future research exploring the complex dynamics of sustainable resource manage-
ment through the lens of active inference.
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5 Appendix 1 - Figures
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Fig. 3: Case 1. The three plots above show the expected behavior. At time step
0, food is available (food left = 0), and the satiety level is low (satiety = 0).
Due to the agent’s strong preference for high level of satiety, it keeps eating at
subsequent time steps and the satiety increases. Since the environment is static,
the food is always present.
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Fig. 4: Case 1.1 - where the agent is given incorrect A and B matrices, introducing
errors in its perception and beliefs about state transitions. The top plot shows the
agent’s actions over time. The pattern is more erratic compared to the standard
Case 1, as the agent is confused. The middle plot shows the food left observations.
Food availability remains constant at 1 throughout the simulation since the
environment is static. The bottom plot shows the agent’s satiety over time.
Satiety level fluctuates more. This indicates that the agent’s ability to maintain
a stable, high satiety state is impaired by the incorrect perception and planning
models.
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Fig. 5: Prior preference for Case 2. The agent’s preferences are changed so that,
unlike case 1 and 1.1 it no longer has a preference over food left. Its only non-
uniform preference is to have a preference over satiety.
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Fig. 6: Case 2 - Dynamic Environment. Without learning, the agent either does
not eat (as shown in the three plots on the left) or eats too much and therefore
allows food in the environment to go to 0 (as shown in the three plots on the
right). As a result, the agent dies.



19

Fig. 7: Case 2 - Dynamic Environment. Example run with learning on and policy
length = 3. With this depth of policy, the agent is able to plan further in time,
and with learning it manages to survive for the whole length of the run. Over 10
time steps the agent is able to plan its behaviour so that it never reaches satiety
= 0, and always has food left.
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Fig. 8: Example run from Case 2 without learning enabled on the left and with
learning enabled on the right, but starting with an extreme B matrix setting
(probabilities set to 1 or 0, on the left three plots and middle three plots, and
high but non-extreme values on the right). The agent dies quickly, just as the
randomly set values of the B matrix in plot 6, and is able to learn on the right.
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Fig. 9: Case 2 with strong prior preferences on both high satiety and high food
left states. On the three top left plots, the agent has no learning, and on the top
right, the agent has learning. On the bottom, we can see that survival time is
vastly different with and without learning, as the preferences affect the behavior
of the agent.
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Fig. 10: Case 2 in a changing environment where food and satiety change at
different time rates. The three top left plots show the results without learning off,
and the three top right plots show the results with learning on. The bottom plot
represents the comparison between the survival time over 10 time steps. Food
increases at a slower rate (0.5 units per step) when not eating and decreases at
a faster rate (1 unit per step) when eating. Satiety decreases faster when not
eating (0.2 units per step) and increases at a different rate when eating (0.8 units
per step).
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Fig. 11: Case 2 example runs runs with policy length = 1, left plot without
learning, right plot with learning, and survival time on the bottom.


