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Abstract 
With the rapid development of Internet of Everything and artificial intelligence techniques and massive 
amounts of video surveillance data, crowd counting has drawn extensive attention in computer vision. Inspired 
by deep learning methods, convolutional neural networks (CNN) have been dedicated to improving the 
effectiveness of crowd counting. As CNN is unable to capture the continuous size changes of heads in images, 
the large-scale variations impede the development of crowd counting. To solve this problem, this paper presents 
an attention and multi-feature fused network (AMFNet) containing a multi-level feature extractor and four 
attentional density estimator (ADE) modules. The multi-level extractor is used to extract the features of 
different sizes and various kinds of context information based on a deep network backbone. The existing ADE 
modules are built to merge different level features to generate a high-quality density map. A channel attention 
unit is adopted in the ADE modules to identify the head accurately. Then, four ADE modules are applied to 
exploit multi-level features and generate a fine-grained density map for coping with various scales. The 
experiment results show that the proposed AMFNet performs well in dense crowd scenarios, and that it is 
comparable to mainstream methods in terms of accuracy and robustness. 
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1. Introduction 
Crowd counting makes great sense in numerous applications, e.g., video surveillance [1], smart city 

governance [2–5], and public safety management [6]. Although well-developed thanks to the massive 
amounts of video surveillance, big data [7], and artificial intelligence (AI) techniques [8], crowd counting 
is limited by various challenges, e.g., perspective distortion, large-scale variations, occlusion, and 
background clutter. 

Researchers have made unrelenting efforts to address these problems. Early work mainly concentrated 
on detection-based [9, 10] and regression-based [11] methods, which are effective on sparse scenarios 
but whose performance is seriously affected by the scale variations and occlusion in the dense crowd. 
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Nowadays, convolution neural network (CNN)-based methods [12–14] feature various architectures for 
crowd counting. These methods aim to regress a density map given the ground truth, where the summed 
pixel values are equal to the final counts.  

Some methods [15, 16] enhance the counting performance by fusing multi-scale information. The 
attention mechanism is also utilized to improve the model performance in crowd counting [17, 18]. 
Despite the improved performance, these methods still have some drawbacks in dealing with large-scale 
variations in congested crowd scenarios. Such scale variation is attributable to the indiscriminate 
placement of cameras. As illustrated in Fig. 1, the heads in images or across diverse images have scale 
variations.  
 

 

Fig. 1. Large-scale variations in crowd scenarios (the green box indicates the head region). 
 

To tackle the large-scale variations in crowded scenarios, we propose an attention and multi-feature 
fused network (AMFNet) for crowd counting. The proposed AMFNet mainly consists of a multi-level 
feature extractor and four attentional density estimator (ADE) modules. The multi-level feature extractor 
is aimed at generating features having different levels and different sizes and containing various kinds of 
context information. The ADE module is adopted to merge different level features to output a high-
quality density map. A channel attention (CA) unit is adopted in the ADE module to identify the head 
accurately. To exploit the multi-level features sufficiently, four ADE modules are connected serially. In 
sum, the contributions of this paper are as follows:  

l An ADE module is designed to generate an elaborate density map for crowd counting. A CA unit 
is adopted in the ADE module to identify the head accurately. 

l By cascading four ADE modules, the proposed AMFNet can fuse features with different levels 
sufficiently.  

l Extensive experiments are carried out on five benchmark datasets to evaluate the counting 
performance in accuracy and robustness. 

The rest of this paper is organized as follows: the related work is depicted in Section 2; the proposed 
method is described in Section 3; and the experiment discussion and conclusion are provided in Sections 
4 and 5, respectively. 

 

2. Related Work  

CNN-based approaches have widely developed in the crowd counting domain [12–14], benefitting 
from the strong ability of feature representation. Here, we primarily analyze three types of CNN-based 
approaches that are closely related to the proposed AMFNet, i.e., multi-scale-based approaches, multi-
level-based approaches, and attention-based approaches. 

 

2.1 Formal Concept Analysis 

These approaches are aimed at fusing multi-scale or multi-context information to resolve the large-
scale variations in dense crowds. Zhang et al. [12] designed a three-branch network by utilizing various 
sizes of kernels to acquire features with various receptive fields. The final prediction is generated by 
fusing these features. Sam et al. [13] built a switching-CNN that leverages a switch classifier to tackle 
large-scale variations. In addition, it adopts recurrent networks to fuse features from multi-column CNN.  
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Chen et al. [19] proposed a multi-scale semantic refined strategy to capture more semantic features of 
various scales so as to address the scale variations. Sindagi and Patel [15] designed a contextual pyramid 
(CP)-CNN to acquire features with multiple scales. By encoding the local and global context, the network 
can be aware of different density classes. Gao et al. [20] designed a DULR (down, up, left, and right) 
module that can handle extremely dense crowds by fusing global, local, and pixel-level features. 

To deal with large crowd-density variations, Sajid et al. [21] built a patch rescaling module that is 
beneficial in fusing multi-scale information. Dai et al. [22] proposed a dense scale network by connecting 
different dilated convolutional layers that could capture multi-scale information. Generally, the 
approaches above are difficult to train due to the cumbersome structures [23]. 

 

2.2 Multi-Level-based Approaches 

These approaches take full advantage of the multi-level information of the backbone network to 
improve the counting performance. Liu et al. [24] designed a multi-column model embedded in structured 
feature enhancement modules to integrate multi-level information to address large-scale variations. Chen 
et al. [25] built a scale pyramid network to acquire multi-level features by using dilated convolutions with 
different rates. Furthermore, Sindagi and Patel [16] proposed a multi-level bottom-top and top-bottom 
fusion network (MBTTBF) to mix information with different levels, which is extracted from shallow to 
deep layers. Song et al. [26] designed a scale-adaptive selection network (SASNet) to generate feature 
representations with multiple levels, which can build the correspondence relation between feature levels 
and head scales. Wang et al. [27] built a semi-supervised multi-level auxiliator to exploit shared 
characteristics at multiple levels to address the scale variation. Zhu et al. [28] built a scale and level 
aggregation module to leverage the multi-level information. The methods above directly use multi-level 
information, but there is a gap between these different levels of information; thus, resulting in information 
loss. The proposed method first enhances low-level information and then merges it with high-level 
information, which is more conducive to the retention of detailed information. 

 

2.3 Attention-based Approaches 

These approaches improve counting performance by applying the visual attention mechanism to enable 
the counting models to concentrate on focused information deliberately. Liu et al. [29] built DecideNet 
to handle scenarios with varying densities. They incorporated an attention module to measure the 
dependability of different kinds of estimations. Amirgholipour et al. [30] proposed a pyramid density-
aware attention network (PDANet). They employed a classification attention module to deliver the multi-
scale features, and two decoder modules were employed to provide a two-scale density map. Wang et al. 
[31] built a hybrid attention module to concentrate on the discriminative region and alleviate the 
background clutter. Rong and Li [32] presented a coarse- and fine-grained attention network (CFANet) 
to restrain the background clutter and adjust weights as the crowd density levels change. Jiang et al. [17] 
built an attention scaling network to alleviate the performance differences in various areas, and it 
improves the estimations by exploiting attention masks. Lin et al. [33] merged a global, learnable local, 
and instance attention scheme into the network to address the large-scale variations. Wang and Breckon 
[34] utilized an attention layer to predict a high-resolution feature map. These attention-based approaches 
use an attention module to enhance the counting performance. Unlike the methods above, the proposed 
AMFNet improves the counting accuracy by embedding the attention unit in multiple modules. 
 
3. The Proposed Approach  

This section presents an overview of the AMFNet architecture. The ADE module is illustrated based 
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on two main steps including coarse density map generation and head identification. Finally, a detailed 
description of the loss function and ground truth generation is presented. 
 

3.1 Network Design 

The structure of AMFNet is depicted in Fig. 2. It includes a multi-level feature extractor and four ADE 
modules. The ADE module is split into two stages: first, it takes two feature maps as input and produces 
a low-level feature map !! ; the second step refines !! and produces the high-quality density map "!. 
The final prediction is generated by a convolutional operation. 

 

 

Fig. 2. Structure of the proposed AMFNet. 
 
The first 13 layers of VGG-16 are utilized to extract multi-level features. Five basic feature maps 

denoted as {#" , ##  #$  ,	#%  ,	#&}  are generated hierarchically through the extractor. The ADE module 
is designed to produce an intermediate density map by fusing multi-level features. Moreover, four ADE 
modules are serially connected to exploit the multi-level features sufficiently. In this case, the final 
prediction M can be obtained through a convolutional operation and is formulated as: 

 
! = &'()(4 × -'(.(, .))), (1) 

 
where -' denotes a function of the ADE module, with .( and .) as the high-level and low-level feature 

maps, respectively. 
 

3.2 Attentional Density Estimator Module 

The multi-level feature extractor can extract five feature maps with different levels. The high-level 
feature map "!*" has more context information and small size, whereas the low-level feature map #! has 
less context information and large size. The ADE module is designed to merge features with multiple 
levels.  

As depicted in Fig. 2, the ADE module contains two steps. First, it can produce a coarse density map 
!!  and recognize a region proposal by fusing feature maps. Thus, it can mitigate errors caused by 
background. The first step can be formulated as: 

 
!! = &'()#$×$(&'()"$×$(&12(#! , 34("!*")))), (2) 

 
where 34 and &12 denote the up-sample and concatenate operation, respectively. The first convolutional 
operation is used for integrating features, and the second convolutional operation is utilized for channel 
reduction. After the first process, the generated density map !!  can highlight a discriminative area. 
However, it causes overestimation by misidentifying other objects in the region.  

The goal of the second step is to identify a head in the previously recognized region. Channel attention 
can be regarded as an object (head in this work) selection through the adaptive adjustment of the weight 
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of each channel process [35]. Thus, a channel attention module is embedded in the ADE module to 
identify the heads.  

As shown in Fig. 3, the CA unit operates on the channel dimension and outputs a channel-wise weight 
W that can emphasize the head features. The CA unit is calculated by: 

 
"! = !! ⊗678(&'()1:(;<"(!!))), (3) 

 
where "! represents the optimized feature map and !! is the coarse feature map. &'()1: denotes a fast 
1-dimension convolutional operation. Through this, the CA unit can suppress the influence of 
misidentifying the object. 

To exploit the basic feature maps and generate an optimized density map sufficiently, four ADE 
modules are serially connected, and an estimated map is obtained through the final convolution layer. 
 

 

Fig. 3. Architecture of the channel attention unit. 
 

3.3 Loss Function 

The proposed AMFNet is optimized by employing the mean squared error (MSE) loss, which aims to 
minimize the distance between the prediction and ground truth. It can be formulated as: 

 

loss = "
,∑ ‖B(.!; D) − ;F!‖##,

!-" , (4) 
 

where G represents the batch size, .! denotes the i-th input image, B(.!; D) and ;F! are the predicted 
density map and the corresponding ground truth, respectively, and D is a series of parameters to be 
learned during training. 
 

3.4 Ground Truth Map Generation 

The geometry-adaptive Gaussian kernel is employed to cope with the dense crowds [12]. Each labeled 
head	ℎ! is blurred by using a Gaussian kernel. Suppose each annotated head is represented as I(ℎ − ℎ!). 
Then, a normalized Gaussian kernel gets convolved with the delta function and generates the Gaussian 
density map. In a nutshell, it is formulated as: 

 
J./ = ∑ I(ℎ − ℎ!) ∗ ;0!(ℎ),1

!-" 	L! = 	M:2N , (5) 
 

where H is the number of head annotations and ℎ represents the position pixel. I(ℎ − ℎ!) depicts a target 
head, and :2N  indicates the mean distance of k-nearest neighbors (k=3 in this work).	L!  represents the 
variance that is positively correlated with :2N , and M is a hyperparameter and is set as 0.3 in the work. 

 

4. Experiments and Discussion 
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4.1 Evaluation Metrics 

Similar to other methods, we employ the most widely used mean absolute error (MAE) and root mean 
square error (RMSE) to measure the counting performance. They are formulated as: 

 

!<B = "
3∑ OP4Q −	P5O3

5-" , (6) 

R!6B = "
3
S∑ TP4Q −	P5T

#3
5-" , (7) 

 

where C represents the number of test samples, P4Q 	denotes the predicted count of the j-th image, and P5	
denotes the ground truth count of the j-th image. They can reflect the accuracy and robustness of the 
model. 

 

4.2 Datasets 

The ShanghaiTech dataset [12] contains two parts: SHHA and SHHB. The SHHA sub-dataset is 
arbitrarily captured from the web, presenting dense scenes, whereas the SHHB sub-dataset comes from 
the street in Shanghai and presents sparse crowds.  

The UCF-QNRF [36] contains 1,535 high-quality images with 1.25 million head annotations. The 
images present a broader variety of scenes in an extremely dense crowd. 

The UCF_CC_50 dataset [37] includes 50 images collected from the web, and the head annotations 
per image vary from 94 to 4,543. As there are limited training samples and the crowds are extremely 
dense, it is a challenging crowd dataset. 

The WorldExpo’10 dataset [38] was captured by 108 cameras during the Shanghai WorldExpo 2010. 
It has a total number of 9,920 frames, from which 199,923 heads are annotated. The test set is divided 
into five parts, and each part has a region-of-interest. 

NWPU-Crowd is composed [39] of 5,109 images with more than 2M head annotations. Compared 
with the aforementioned datasets, it is much more challenging as it contains negative instances, high 
resolution (2311×3383), and large-scale variation.  

 

4.3 Implementation Details 

To ensure that the proposed network is sufficiently trained during the training stage, we randomly crop 
the original images and flip them horizontally. The training and test are conducted on two NVIDIA 
RTX3060 GPUs in the PyTorch framework. The backbone network is the pre-trained VGG-16 from 
ImageNet. For the WorldExpo’10 dataset, the training size is set as 512×672, and other datasets are set 
as 576×768. As the NWPU-Crowd dataset has higher resolution compared with other datasets, a large 
batch size may lead to out-of-memory during the training stage. The batch size of NWPU-Crowd is set 
as 4, and the batch size is set as 8 for other datasets. The Adam [40] algorithm is employed to optimize 
the model. Learning rate Lr is initially set as 106&, and decay rate Dr is set as 0.995. Training epoch T is 
set as 1,500. In a nutshell, the pseudocode of AMFNet is depicted in Algorithm 1. 

 
Algorithm 1. Pseudocode of the proposed AMFNet 
Input: Original image 

1 Initialize Lr, Dr, B, and T. 
2 Extract features {!",!#,!$,!%,!&} from VGG-16, 
3 function1 CA unit 
4 optimized feature 				#! = %! ⊗'()(+,-.10(12#(%!))) ,  
5 end function1 
6 function2 ADE module 
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7   feature1								%! = +,-.#$×$(+,-."$×$(+45(!! , 78(#!*")))), 
8 feature2 							#! = 9:-;5(,-1(%!), 
9 end function2 

10 for i = 1:4 
11 initial feature <(, <) = 9:-;5(,-2(>?5@4;5_9>45:@>) 
12     estimated map 									% = +,-.(B'(<(, <)))  
13 End 
14 return final map M 

Output: Estimated density map M 
 

4.4 Comparative Analysis 

To verify the effectiveness of the proposed AMFNet, comparative experiments are conducted with 
state-of-the-art methods. The experiment results are presented in Tables 1 and 2. 

For the SHHA sub-dataset, AMFNet ranks first in MAE (66.8) and third in RMSE (107.6). For the 
SHHB sub-dataset, the proposed method ranks first in MAE (7.7) and RMSE (12.2) compared with the 
competitors. The visual results are depicted in Fig. 4. The first, second, and third rows denote the original 
image, ground truth, and estimated map, respectively. This demonstrates that the counting value obtained 
by the proposed method is very close to the ground truth in both congested scene (SHHA) and sparse 
scene (SHHB). 

For the UCF_CC_50 dataset, AMFNet scores 217.3 and 354.6 in MAE and RMSE, respectively. 
Compared with CSRNet [41], which also settled down to the scale variation in congested scenes, it 
improves MAE and RMSE by 18.4% and 9.5%, respectively. The subjective evaluations are shown in 
Fig. 5. This proves that AMFNet performs well in scenarios with large-scale variations. 

For the UCF-QNRF dataset, the proposed AMFNet outperforms all the competitors. Specifically, 
AMFNet reduces MAE and RMSE by 28.1% and 20.8%, respectively, compared with PCCNet [21], 
which also adopts the method of multi-level information fusion. Furthermore, although the images in 
UCF-QNRF have large-scale variation, the result also proves that the proposed AMFNet can cope well 
with this problem. 
 

Table 1. Comparative results on the SHHA, SHHB, UCF_CC_50, QNRF, and NWPU-Crowd datasets  

Method 
SHHA SHHB UCF_CC_50 QNRF NWPU-Crowd 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Zhang et al. [38] 181.8 277.7 32.0 49.8 467.0 498.5 - - - - 

MCNN [12] 110.2 173.2 26.4 41.3 3776 509.1 277.0 426.0 232.5 714.6 

CMTL [14] 101.3 152.4 20.0 31.1 322.8 341.4 252.0 514.0 - - 

A-CCNN [42] 85.4 124.6 19.2 31.5 367.3 423.7 - - 176.5 520.6 

Switch-CNN [13] 90.4 135.0 21.1 30.1 318.1 439.2 228.0 445.0 - - 

SaCNN [43] 83.8 139.2 16.2 25.8 314.9 424.8 - - - - 

MobileCount [44] 81.4 133.3 8.1 12.7 284.5 421.2 117.9 207.6 - - 

ACM-CNN [45] 72.2 103.5 17.5 22.7 291.6 320.9 - - - - 

PCCNet [20] 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 - - 

ic-CNN [46] 68.5 116.2 10.7 16.0 266.1 397.5 - - - - 

IG-CNN [47] 72.5 118.2 13.6 21.1 291.4 349.4 - - - - 

CSRNet [41] 68.2 115.0 10.6 16.0 266.1 397.5 - - 121.3 387.4 

DecideNet [29] - - 20.8 29.4 - - - - - - 

SANet [48] 67.0 104.5 8.4 13.6 258.4 334.9 - - 190.6 491.4 

AMFNet (proposed) 66.8 107.6 7.7 12.2 217.3 354.6 106.8 195.9 115.2 379.3 

The best results are marked in bold. 
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(a) (b) 

Fig. 4. Visualization of the estimated results on the ShanghaiTech dataset: (a) SHHA and (b) SHHB. 
 

Table 2. Comparative results on the WorldExpo’10 dataset 

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 MAE (Avg.) 

Zhang et al. [38] 9.8 14.1 14.3 22.4 3.7 12.9 

MCNN [12] 3.4 20.6 12.9 13.0 8.1 11.6 

CMTL [14] 3.8 32.3 19.5 20.6 6.6 16.6 

Switch-CNN [13] 4.4 15.7 10.0 11.0 5.9 9.4 

SaCNN [43] 2.6 13.5 10.6 12.5 3.3 8.5 

ACM-CNN [45] 2.4 10.4 11.4 15.6 3.0 8.6 

PCCNet [20] 1.9 18.3 10.5 13.4 3.4 9.5 

ic-CNN [46] 17.0 12.3 9.2 8.1 4.7 20.3 

IG-CNN [47] 2.6 16.1 10.2 20.2 7.6 11.3 

CSRNet [41] 2.9 11.5 8.6 16.6 3.4 8.6 

DecideNet [29] 2.0 13.1 8.9 17.4 4.8 9.2 

SANet [48] 2.6 13.2 9.0 13.3 3.0 8.2 

AMFNet (proposed) 0.8 12.0 9.0 9.1 2.9 6.7 

The best results are marked in bold. 

 

The proposed method performs best in Scene 1 (sparse crowd) and Scene 5 (congested crowd) with 
MAE score of 0.8 and 2.9, respectively. Meanwhile, the average MAE is achieved using the best overall 
methods with a score of 6.7, demonstrating that the overall performance of the proposed AMFNet is 
remarkable compared to other methods across various scenes. The qualitative results on the 
WorldExpo’10 dataset are depicted in Fig. 6. The visualization shows that AMFNet performs well in 
different crowd scenarios. 

On the NWPU-Crowd dataset, the proposed AMFNet scores 115.2 and 379.3 in MAE and RMSE, 
respectively, showing an improvement of 39.5% and 22.8 % in MAE and RMSE, respectively, compared 
with SANet [48], which also extracts multi-level features for crowd counting. The visualized results are 
shown in Fig. 7. This proves that AMFNet can suppress the influence of background. 
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(a)	 (b)	

Fig. 5. Visualization of the estimated results on the (a) UCF-QNRF and (b) UCF_CC_50 datasets. 
 

 

Fig. 6. Visualization of the estimated results on the WorldExpo’10 dataset. 
 

 

Fig. 7. Visualization of the estimated results on the NWPU-Crowd dataset. 
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4.5 Ablation Study 

To verify the effect of various configurations and modules on crowd counting performance, extensive 
ablation experiments are conducted on the SHHA dataset. The experiments explore the proposed model 
from two aspects: the ADE module and the CA unit. The corresponding items are listed as follows: 

1. “Baseline” denotes the basic model that adopts only VGG-16.  
2. “Baseline + ADE(1)” represents adding one ADE module to item 1.  
3. “Baseline + ADE(2)” refers to adding two ADE modules to item 1.  
4. “Baseline + ADE(3)” denotes adding three ADE modules to item 1.  
5. “Baseline + ADE(4)” represents the proposed AMFNet.  
6. “Baseline + ADE(n) (w/o CA)” denotes adding n ADE modules without the CA module to the “baseline.” 

Table 3 shows that the baseline model scores 81.7 and 126.7 in MAE and RMSE, respectively, which 
are the worst across all entries in the table. After adding an ADE module to the baseline model, MAE 
and RMSE decrease by 6.0% and 2.8%, respectively. This demonstrates that the ADE module is helpful 
in enhancing the counting performance. When the number of ADE modules reaches 4, MAE and RMSE 
reach the lowest scores of 66.8 and 107.6, respectively. This proves that fusing the features of different 
scales is essential in enhancing the performance of counting heads. When the CA module is removed 
from the ADE module, the scores of MAE and RMSE decrease as shown in the even rows (2, 4, 6, and 
8) in Table 3. This proves that the CA unit is beneficial in boosting the counting accuracy. 

 
Table 3. Ablation analysis of the key components in AMFNet  

Methods MAE RMSE 
Baseline 81.7 126.7 

Baseline + ADE(1) (w/o CA) 76.8 123.2 

Baseline + ADE(1)  75.1 122.0 

Baseline + ADE(2) (w/o CA) 74.0 120.7 

Baseline + ADE(2)  73.3 118.8 

Baseline + ADE(3) (w/o CA) 71.3 116.6 

Baseline + ADE(3)  70.6 111.7 

Baseline + ADE(4) (w/o CA) 68.8 109.2 

Baseline + ADE(4) (proposed) 66.8 107.6 
The best results are marked in bold. 

 

5. Conclusion 

This study presented an AMFNet to address the large-scale variations in crowd counting. The key 
component in AMFNet is the ADE module, which can fuse different level features and produce an 
elaborate density map. By cascading four ADE modules, various features are sufficiently used for 
information fusion.  The experiment results illustrate that the AMFNet outperforms many related methods 
in terms of accuracy and robustness. In future work, other evaluation factors such as semantic 
interoperability and crowd mobility shall be explored to improve the extraction quality of crowd counting. 
Likewise, meta-heuristic algorithms can be applied for improving feature selection methods in attention-
based density estimation. 
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