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Abstract: Research in the medical imaging field using deep learning approaches has become progres-
sively contingent. Scientific findings reveal that supervised deep learning methods’ performance
heavily depends on training set size, which expert radiologists must manually annotate. The latter is
quite a tiring and time-consuming task. Therefore, most of the freely accessible biomedical image
datasets are small-sized. Furthermore, it is challenging to have big-sized medical image datasets
due to privacy and legal issues. Consequently, not a small number of supervised deep learning
models are prone to overfitting and cannot produce generalized output. One of the most popular
methods to mitigate the issue above goes under the name of data augmentation. This technique helps
increase training set size by utilizing various transformations and has been publicized to improve
the model performance when tested on new data. This article surveyed different data augmentation
techniques employed on mammogram images. The article aims to provide insights into basic and
deep learning-based augmentation techniques.

Keywords: data augmentation; deep learning; medical imaging; mammograms

1. Introduction

Amongst various artificial intelligence fields, Deep Learning (DL) is widely adopted
for the processing and analysis of radiological images. DL has been successfully applied to
multiple Computer Vision tasks such as Object Segmentation, Detection, and Classification,
mainly thanks to accuracy rates achieved by convolutional neural networks (CNNs). CNNs
have the capabilities to automatically learn features through several network layers from a
large set of labelled datasets [1]. Concerning the biomedical image analysis topic, CNNs
have been successfully utilised for various tasks such as lesion or tumour classification,
suspicious region detection, and abnormality detection [2–4]. DL-based solutions serve
as a second opinion tool for expert radiologists and assist them in decision-making, and
proper treatment planning [5]. However, there needs to be a large amount of ground truth
to build a DL model capable of inferring knowledge from data and avoiding the model
being very accurate only on the training dataset images. The latter goes under the name
of overfitting [6,7] and represents a critical issue to overcome to have a model capable of
delivering appropriate knowledge inference capabilities on a given application domain.
Furthermore, having high-quality and manually annotated data is a time-consuming and
expert dependent task. Unfortunately, that is quite common in the context of mammogram
analysis [8–10]. One of the most challenging tasks for DL models is the generalisation, with
generalisation being the capability of models to recognise those categories they were trained
for on new data [11,12]. The model with poor generalisation generally does not perform
well due to high overfitting on the training set. Overfitting can be observed somehow in
the plot showing validation accuracy at every epoch of the training phase [1]. Figure 1
shows the pictorial representation of models with and without overfitting. The training
and validation loss curve is progressively and simultaneously reducing, which is a perfect
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circumstance, as shown in Figure 1 (left). The right side of the figure shows overfitting,
in which the validation loss begins to grow after a certain number of epochs. In contrast,
the training loss keeps decreasing. That is due to the model’s inability to work effectively
with unknown or new data. One of the reasons for this phenomenon might be a lack of
enough training samples. The validation error of suitable DL models should continue to
decrease along with the training error. Data augmentation methods can help achieve this
task. Augmented data can characterise the inclusive set of input data points and minimise
the distance between validation and training data. Data augmentation techniques apply
alterations to training datasets to produce more samples. Moreover, this technique helps
the model avoid learning features too specific to the original data, resulting in a more
generalised model with improved performance on the test dataset. Class distribution
imbalance in datasets is another common challenge. For instance, binary classification
problems occur when one class (the minority class) holds considerably fewer samples
than the other class (the majority class). Due to this, the model may get biased towards
the majority class, possibly resulting in misclassification. Augmenting the minority class
images may be used to mitigate the imbalance problem. Data augmentation is not the only
approach to reduce the effect of overfitting and class imbalance. Other options for avoiding
overfitting in DL models are also explored in the literature (see Figure 2).

Figure 1. (a) Shows the ideal trend of the model with training and validation error functions
decreasing almost simultaneously. (b) Shows the undesired effect of overfitting, having the training
error decrease and, conversely, validation error increases suddenly.

Figure 2. Methods to tackle overfitting.

Batch Normalization: Batch Normalization can overcome the side-effect of overfitting
by diminishing the internal covariate shift and instability in the distributions of Deeper
networks’ layer activations. For each mini-batch, batch normalisation standardises the
inputs to a layer. That has the effect of bringing the learning process into balance.
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Dropout: Dropout applies during the training phase to get randomly selected neurons
ignored. That avoids the so-called layer’s “over-reliance” on a few inputs. Still, apart from
that, it also prevents neurons from co-adapting to training data.

Transfer Learning (TL): Transfer learning improves models’ performances on new and
unknown data. The main point with TL is employing pre-trained models to be fine-tuned
on a specific application domain using a small-sized dataset.

Pre-training: Model pre-training is similar to TL; the only difference is that model
architectures can be defined, and weights are transferred.

Early-stopping: It allows providing an arbitrarily large number of training epochs to
suddenly stop training if the model does not perform well on the validation set.

1.1. Research Contribution

Image augmentation techniques have been applied to mammogram datasets to in-
crease the training set size, allowing data-hungry learners to benefit from more representa-
tive data. A review is conducted to summarise image augmentation techniques used in
medical imaging applications such as deep learning-based for breast cancer diagnosis. The
two following main categories of image augmentation techniques are surveyed here: (1)
Basic image augmentation techniques and (2) Advanced augmentation techniques. The
search terms used in the study are combinations of keywords such as “data augmentation”,
“image augmentation”, “deep learning”, “breast cancer”, and “mammograms”. Articles
that do not utilise or discuss data or image augmentation were discarded in this study.
The research mainly focuses on image augmentation for mammogram images. Therefore,
articles whose subject is on other imaging modalities such as CT scans, Breast MRI, Breast
ultrasounds, Histopathology, etc., are excluded. Articles on image augmentation used in
the literature for breast image analysis applications are also summarised according to the
dataset, model, technique, tasks performed, etc. In the scientific literature, comprehensive
and insightful surveys on image augmentation methods are present; some are specific
to medical images. For example, the authors in [1] suggested several data augmentation
solutions as ways to tackle models overfitting due to low-sized datasets. Another article [5]
presents a thorough evaluation of the data augmentation methods employed in the broad
topic of medical image analysis. In further detail, the authors focused on CT and MRI.
However, another article reports recent advancements in data-augmentation techniques
for brain MRI [13] by examining the papers submitted to the Multimodal Brain Tumor
Segmentation Challenge (BraTS 2018 edition [14]). This paper aims to quickly access the
research field and form an appropriate groundwork for the domain. This work examines
several articles from various conferences, books and indexed journals out of scientific
databases such as Scopus, IEEE, Web of Science and PubMed in compliance with PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) [15] recommen-
dations. Figure 3 depicts the selection procedure. From a data augmentation standpoint,
the goal of this work is to provide insights into the broader area of mammography image
analysis. Mammograms are the primary matter of discussion in the article. The goal is to
give readers an understanding of basic and deep learning-based augmentation approaches.
Therefore, other than other review articles on the topic, the main goal here is to survey
different approaches for data augmentation and check through the pros and cons of mam-
mogram analysis related tasks. The impact of data augmentation techniques is analysed by
checking through the dataset size increase and the pre and post-augmentation accuracy
rates of models over a specific task.

1.2. Paper Topology

The paper is structured as follows: Section 1 provides background and context for
image augmentation within the broad topic of a deep learning-based CAD system for
medical imaging. Section 2 delves into various image augmentation techniques used in
practice. Advanced image augmentation methods are showcased in Section 3. Insights into
test-time augmentation are provided in Section 4. Discussions and conclusions, Sections 5
and 6, respectively end the paper.
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Figure 3. The PRISMA flow diagram and the selection method.

2. Basic Image Augmentation Techniques

Data augmentation techniques have been used to increase the size of the training
set to provide more illustrative training samples to large-capacity learners [16]. Data
augmentation encompasses a comprehensive range of techniques by inserting random
variations into the existing training samples while preserving class labels. The purpose of
data augmentation is to improve the model knowledge inference capability. One of the most
meaningful principles adopted in data augmentation relates to the physical phenomenon
of a state perturbation. The latter takes the form of slightly changed versions of images.
Consequently, it increases the dataset size, allowing the network to infer knowledge from
a broader pool of images. Therefore, when using deep learning in computer vision tasks,
three types of data augmentation are the most likely; (1) Dataset generation and expansion.
(2) On-the-fly data augmentation. (3) Amalgamation of Dataset generation and on-the-fly
data augmentation. As already mentioned and widely covered in the scientific literature,
supervised DL models [17] need a large amount of training data to unleash their knowledge
inference capabilities fully. In the worst-case scenario, only one image is available, and
data augmentation comes into play to produce a complete image collection. The task
carries out random transformations (rotation, flipping, etc.) and other effects on the original
image. Then, the newly generated images feed the DL model during the training phase.
Methods like generation and expansion can forge N number of images. However, these
approaches are not exempt from flaws: employing images generated by these methods does
not necessarily improve models’ generalisation abilities. On-the-fly data augmentation
(sometimes also called in-place) is the second type of data augmentation [18]. On-the-fly
data augmentation helps DL model training see new variations of images at each epoch.
It takes image batches as input and then applies a series of random transformations and
other effects on each image in the batch. It finally returns a randomly altered image batch.

2.1. Geometric Transformations

In geometric transformation, an original image undergoes various modifications
such as translation, rotation, scaling, flipping, or resizing to increase the training dataset
size [5]. These conventional data augmentation techniques produce somewhat correlated
images [19] and hence offer significantly less improvement to the model training and
generalisation over test data. However, these transformations lead to a significant increase
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in the training dataset; therefore, they are widely used in the domain [13]. This section
presents the most commonly used geometric transformations for computer-aided breast
cancer diagnosis. It also briefly surveys methods building on the data augmentation
methods mentioned above.

2.1.1. Flipping
Flipping generates a mirror image of an image with both horizontal or vertical axes.

The horizontal axis is more preferred over vertical flipping because the top and bottom
parts of an image may not be interchangeable always [13]. However, flipping cannot always
be a label-preserving transformation (e.g., MNIST dataset) [1]. For example, in datasets
such as DDSM [20] and CBIS-DDSM [21], most of the breast profiles are on the left side
of the mammograms. Making uniform direction of the breast in mammograms makes
padding easier to perform during preprocessing steps.

2.1.2. Rotation
Images are rotated leftward or rightward across an axis within the range [1°, 359°].

The rotation angle determines the safety of this augmentation technique. The possibility
of keeping the label post-transformation is known as a Data Augmentation method’s
safety. An image label might no longer be preserved with an increase in rotation degree.
For example, rotation transformation is possibly safe on medical image datasets (X-ray,
mammograms, Breast MRI, etc.) as well as on images of other datasets like ImageNet [22],
but not on images of 9 and 6 for digit identification tasks.

2.1.3. Translation
Translation applies to prevent positional bias [1]. This transformation translates the

whole image by a given translation vector along a specific direction. It helps the network
learn geographically invariant properties rather than focusing on features present in a single
spatial location [13]. In the case of breast mammograms, translation of images can generate
suitable augmented images. After the translation, padding or pixel replication usually
comes into play to fill out the leftover space. The process keeps the image dimensions [1].

2.1.4. Scaling
Scaled versions of images are added to the training set; deep neural networks can

learn features regardless of their original scale. Furthermore, scaling can be applied using
scaling factors in different directions. For example, breast lesions may vary in size; this
transformation can bring realistic augmented images into the training dataset. Figure 4
shows examples of geometric transformations applied to MIAS [23] images.

Figure 4. Example of images after applying geometric transformation.
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Limited dataset size is one of the most common barriers in the medical research
domain. Therefore, the scientific literature provides a wide range of techniques to handle
this issue. For example, Costa et al. [24] employed data augmentation to create new images
based on their original clinical mammography dataset, and they compared the results across
different CNN architectures. The authors used geometric transformations such as rotation
by varying degrees, flipping and adding Poisson noise. The model performs better when
more regions of interest are added to the training step using data augmentation techniques.
A new CNN model for identifying architectural distortion is proposed by Oyelade et al.
in [8], which uses rotation, flipping, shearing and scaling for data augmentation. In their
article, Cha et al. [25] stated, “Deep learning algorithms can improve performance by
expanding their training set with synthetic examples”.

Horizontal and vertical flipping methods were used by Omonigho et al. [26] to
augment the training set. By augmenting the training set with scaling, horizontal flip,
and rotation, the authors could achieve 95.70% overall accuracy on the modified AlexNet
model. In another study [27], Rahman et al. showed how specific pre-processing, transfer
learning, and data augmentation approaches may help overcome the dataset size bottleneck
in medical imaging applications. Geometric transformations such as reflection, translation,
random scaling and random rotations were applied to the DDSM mammogram dataset.

Shi et al. [28] implemented a customised CNN to classify BI-RADS [29] density of mam-
mogram images. The MIAS dataset was augmented using various transformations such as
zooming, flipping, rotation and shifting. The authors carried out five-fold cross-validation
of the model, which yielded an average test accuracy of 83.6%. Still, it is paramount to
keep a certain level of variety between the images. Therefore, Khan et al. [30] developed
a mammogram classification system and adopted random horizontal and vertical shifts,
random shear and zoom as data augmentation techniques.

Zhang et al. [31] performed data augmentation through reflection and rotation. Ini-
tially, each original image underwent horizontal flipping, and then original and reflected
images were rotated by 90°, 180°, and 270° degrees, respectively. As a result, the dataset
increased eight times in size. The authors evaluated seven different architectures and con-
cluded that models built and optimised using data augmentation and transfer learning had
a lot of potential for automatic breast cancer detection. Bruno et al. [12] extracted patches
from mammogram datasets such as MiniMIAS [32] and their own freely accessible dataset
called SuREMaPP. Image transformations such as translations, horizontal reflections, and
crops were employed in the study to generate augmented patches. Figure 5 shows an
example of patches and augmented patches out of geometric transformations.

Figure 5. An example of patch of Mammogram and a sample of patches generated with geometric
transformation [12].

Assari et al. [33] suggested a BI-RADS-based CAD system for breast mass discrim-
ination. The study makes use of GoogleNet for transfer learning. The authors used the
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DDSM breast mammography dataset. The authors used augmentation techniques such as
horizontal flipping, clipped ROIs, and random zero-mean Gaussian noise to address the
issue of overfitting. Another work by authors of [34] presented a system for mass detection
and classification. To address the issue of class imbalance and small-sized datasets, the
authors used two different augmentation approaches. In the first method, the authors have
augmented the whole dataset and then divided it into training and testing sets.

Muduli et al. [35] ran various geometric transformations and Gaussian noise to
generate a large number of samples: 2240 for Inbreast, 3200 for MIAS, and 28,800 for
DDSM. The resulting images helped the authors work out the training of a deep CNN for
breast cancer classification. A new domain generalization method is proposed in [36] to aid
mammography lesion detection techniques. Domain-invariant features were embedded in
a range of datasets using a multi-style and multi-view contrastive learning technique. The
results showed that the domain generalisation technique is successful and can significantly
improve both seen and unseen lesion detection tasks.

2.2. Pixel Level Augmentation

Pixel-level augmentation is quite helpful for research in medical imaging fields, as
medical images are obtained with several technologies and imaging modalities; hence, they
can be essentially assorted in pixel intensities [13]. In pixel-level augmentation, intensities
of pixels are perturbed with random noise and a given probability, also called random
intensity variation. In addition, a pixel-level augmentation modifies the brightness of an
image. Among others, gamma correction (and all its variants), image blurring, and image
sharpening represent forms of pixel-level augmentation [37–39].

2.3. Pseudo-Colour Augmentation

Pseudo-colour augmentation applies to colour channels spaces. Isolating a single
colour channel, such as R, G, or B, is the first step for colour augmentation consisting
of deriving a colour histogram that describes the image allows further advanced colour
augmentations. Mammograms are turned into pseudo-colour pictures to assess the effec-
tiveness of Mask R-CNN. The latter is carried out using multi-scale morphological sifting,
which boosts mass-like patterns. Mask R-CNN is then used with transfer learning to detect
and segment masses on pseudo-colour images at the same time [40].

2.4. Random Erasing

Random erasing is another data augmentation technique [41] complementary to the
previously described ones. The main goal of this technique is to make a model robust against
occlusions in images. One of the most meaningful features is the learning phase being
parameter-free. In Figure 6, some examples of random erasing image augmentation are given.

Figure 6. Mammograms after applying random erasing.
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2.5. Kernel Filters

Kernel filters rely on spatial filtering techniques to sharpen or smooth pixel values. It
uses M ⇥ M size filtering masks. Along with transformations such as padding, flipping,
and cropping, Kang et al. [42] used a kernel filter swapping pixel values with a n ⇥ n

sliding window. The experiments were carried out on four different datasets such as
SVHN [43], MNIST [44], CIFAR-10 [45], and STL-10 [46]. A different data augmentation
method involves combining images by averaging their pixel values. The main point is
to generate different samples to have the model be able to generalise information from
data [1]. Various kernel filters such as gaussian blur, mean filter, median filter, Laplacian
filter, etc., can be employed for data augmentation purposes.

Figure 7 shows some images generated with various kernel filters. Adedigba et al.
in [47] employed the augmented dataset to train five state-of-the-art models. The authors
used Gaussian blurring and additions of white noise and geometric transformations to
increase the training set. The experiments showed DensNet remarkably achieving the
highest training and validation accuracy (99.01% and 99.99%, respectively). Artificially
generated mammograms and data augmentation techniques are applied by Yemini et al.
in [48] to increase and balance the available database at training time. Along with flipping
transformation, the authors of this work used Gaussian noise and changed image brightness
to generate new images from the original samples.

Figure 7. Example of data augmentation based on various filters and noise.

3. Advanced Augmentation Techniques

In the last decade, several methods have been proposed to generate new samples from
a reference dataset. The main goal has been to overcome all issues related to basic data
augmentation techniques. This section groups advanced techniques for data augmentation
into two main categories: GAN-based augmentation, and NST augmentation.

3.1. GAN-Based Augmentation

GANs (Generative Adversarial Networks) belong to the family of unsupervised deep
learning algorithms capable of extracting hidden underlying properties from data and
employing them in decision-making. The fundamental goal of a GAN is to develop
new image samples (by a generator) that the discriminator will not be able to tell apart
from the original ones (Both network branches compete against each other and gradually
learn to produce better results) [49]. GANs are reliant on two main components, namely,
generator and discriminator. Scientific literature shows they are also used to learn noise
augmentations. In adversarial training, one model classifies examples while another adds
noise to deceive the classifier. The adversarial model is then given a loss function by the
classification model, allowing it to improve itself to create better noise. Including images
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from adversarial training might help models acquire more robust features that are less
sensitive to noise distortions. Although it has been proven that using adversarial search
to inject noise improves performance in adversarial cases, it is unclear if this is effective
for decreasing overfitting. That is still currently an open challenge and has researchers
investigating the link between adversarial attack resistance and actual performance on
test datasets [1]. In addition, several DL-based augmentation systems employ adversarial
training (including GAN-based and other adversarial learning networks) [50,51]. GANs
are a widely used data augmentation approach to detect patterns and variances in image
samples from the training dataset [52,53]. They have also been used for breast mass
detection [53], mass classification [10] as well as mass segmentation [54]. The realistic
level of artificially generated images for medical scenarios is still a debate matter [5]. On
the other side, Shen et al. [55] provide a unique strategy based on GANs for generating
varied mass images to perform contextual infilling by incepting synthetic masses into
mammograms. Furthermore, their system automatically annotates the generated mass
from patches. As shown in Figure 8, a mammogram image is transformed into a new one
containing the incepted mass. Shen et al. carried out similar experiments on a private
dataset too (Figure 9). In [56], the authors generated synthetic data via Cycle GAN. They
carried out mass classification tests over 412 images: 212 with cancerous mass and 202 with
no cancerous mass. The findings revealed that synthetically generated images, along with
domain transformation from unrelated masses, could be used to increase the training
sample size and improve the mass classification accuracy rates.

Figure 8. Given mask image (A); normal mammogram image (B); generated mammogram image
with synthetic mask (C) [55].

A deep neural system to support tumour recognition in mammograms was proposed
in [57], with GANs serving as a data augmentation tool. The research was carried out
utilising a large-sized database containing around 10,000 mammographic images from
the DDSM dataset. A class-conditional GAN (ciGAN) was trained to perform contextual
in-filling, which is subsequently used to synthesise lesions onto healthy screening mam-
mograms in [9]. The authors also showed ciGAN-synthesized samples for cancerous to
non-cancerous and non-cancerous to cancerous transformations. Experimental research
involving specialist doctors in the assessment of GANs on the generation of medical im-
ages was presented in [58]. Some promising results showed that the developments of
GAN-based image synthesis could successfully apply to high-resolution medical imaging.
Figure 10 provides examples of original and synthetic mammograms from [58]. Users
may modify or enrich existing datasets by effortlessly putting a real breast mass or micro-
calcification cluster retrieved from a source digital mammography into a different region
of another mammogram. Findings of a reader experiment that compared the realism
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of inserted lesions to clinical lesions were shown in [59]. Using the receiver operating
characteristic (ROC) technique, radiologist ratings showed that injected lesions cannot be
consistently discriminated from clinical lesions. Swiderski et al. [57] remarked a ResNet-50
classifier trained on GAN-augmented data produced better AUROC than when trained
solely with traditionally augmented data. The adoption of data augmentation as an overfit-
ting mitigation technique was investigated in [25]. “In silico” procedural analytic breast
and breast mass modelling algorithms were used to create synthetic mammograms. They
were then projected into mammographic pictures using simulated X-ray projections.

Figure 9. Private Dataset: Given mask image (A); normal mammogram image (B); generated
mammogram image with synthetic mask (C) [55].

Figure 10. Randomly sampled examples of original and synthetic mammograms [58].

3.2. Neural Style Transfer (NST)

Deep Learning proved effective even in mixing styles out of different images. Neural
Style Transfer is meaningfully representative of the quality levels achieved on this [60]. The
overall goal is to alter visual representations formed in CNNs [61]. Neural Style Transfer is
well known for its uses in creative application domains, but it can also be used to augment
data. The technique manipulates the sequential representations across a CNN to transfer
the style of one image to another while keeping the original content [1]. Gatys et al. [62] first
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proposed NST, which typically takes two input images: a content image C to be transferred
and a style reference image S. It executes feature learning from the representations of Fl(C)
and Fl(S) in layer l of a neural style transfer network [63]. However, suppose the image
styles from different datasets are way too far. In that case, it may cause a wide domain
gap undermining deep learning models’ capacities to target a specific scenario of interest.
Wang et al. [63] proposed a multi-resolution and multi-reference NST network to address
style diversity in mammograms. With very high resolution, the network can normalise
styles from several vendors (e.g., GE Healthcare (GE) and United Imaging Healthcare (UIH)
to the same style baseline.

A novel approach for detecting abnormal and normal regions from mammograms has
been presented by Ramadan et al. [64]. They combined a cheat sheet containing standard
features retrieved from ROIs with data augmentation boosting CNN performances in breast
cancer detection. As a result, the accuracy rate improved by at least 12.2% and precision by
at least 2.2%.

Based on the identification of masses in the projections, the authors of [65] assessed
the usage of data augmentation and the selection of non-overlapping areas of interest (ROI).
Zhang et al. [31] combined data augmentation and transfer learning techniques with CNN
models to improve the performance of the classifiers for mammogram images.

3.3. Other Techniques

Evolutionary algorithms deal with problem solutions’ optimisations by building on
Darwin’s natural selection theory. There are some crossings elements between evolutionary
algorithms and the broad pool of machine learning methods for classification, regression,
and clustering tasks. In this section, a specific evolutionary algorithm is described for
biomedical image augmentation: crossover [66]. The crossover technique is proposed
in [66] for medical image classification problems using CNNs. The method creates sample
pairs through two-point crossover on already existing training datasets. From N training
samples, authors could generate N new samples. The process was examined on the Mini-
MIAS dataset with the VGG-16 and VGG-19 pre-trained models. The “natural deformation
data augmentation approach” is proposed by Cao et al. [67] as a new data augmentation
method based on local elastic deformation. The essential notion is that only the BMass
is elastically deformed in a picture containing BMass to replicate the natural changing of
BMass, while the local background region in contact with BMass changes accordingly. The
research by Chen et al. [68] paved the way for the employability of virtual adversarial
training (VAT) to improve the performance of semi-supervised classification of malignant
and benign masses from mammograms. This especially applies to medical scenarios with
unlabeled medical images. By employing augmentation methods such as Cutout [69] and
RandConv [70], Garrucho et al. [71] ran comparisons between eight different object detec-
tion models to detect breast masses from mammogram repositories such as OPTIMAM [72],
INbreast [73], BCDR [74]. Another study by Tran et al. [75] presented a Transparency
strategy-based technique for generating abnormal instances by changing the pixel val-
ues. Experiments confirm the proposed approach improving the BI-RADS classification
task on mammography assessments. The augmentation method was compared with The
CutMix [76] augmentation approach and outperforms the same.

Table 1 summarises basic and advanced augmentation techniques with their strength
and limitations. Finally, Table 2 presents a summary of methods that adopted image
augmentation strategies to improve the model performance and counter overfitting. Fur-
thermore, we also summarise some articles by highlighting pre and post-augmentation
performances as well as pre and post augmentation dataset sizes (see Table 3).
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Table 1. Summary of basic and advanced image augmentation techniques.

Sr No. DA Technique Sub Category Label Preserving Strength Limitation

1 Geometric
Transformation [1,5]

Flipping No

Good solutions for positional bias present
in training data. Easy implementation

Additional memory, Transformation
compute cost, Additional training
time, Manual observation

Cropping Not always

Rotation Not always

Translation Yes

2 Noise Injection [77] - Yes Allows model to learn more robust Difficult to decide amount of noise
to be added

3 Kernel Filters [1] - Yes Good to generate sharpen and
blurred images Similar to CNN mechanism

4 Mixing Images [78] - No -
Makes not much sense from human
perspective. Not suitable for medical
images

5 Random Erasing [41] - Not always

Analogous to dropout regularization.
Designed to combat image recognition
challenges due to occlusion, A promising
technique to guarantee a network pays
attention to the entire image, not a subset
of it

Some manual intervention may be
necessary depending on the dataset
and application

6 Adversarial Training [79] - Yes Help to illustrate weak decision boundaries
better than standard classification metrics Less explored

7 Generative Adversarial Network [80] - Yes GANs generate data that looks similar to
original data

Harder to train, Generating results
from text or speech is very complex.

8 Neural Style Transfer [60] - - Improves the generalization ability of
simulated datasets

Efforts needed to select style,
Additional memory,
transformation cost

Table 2. Summary of articles using Image augmentation.

Ref. Task Performed Model Dataset Model Performance Data Augmentation Approach

[24] AD detection Deep CNN
(Augmented CNN-SW+)

Private AUC: 0.83 ± 0.14 Rotation by 90, 180 and 270 degrees,
mirroring and adding Poisson noise

[8] AD detection Deep CNN MIAS, DDSM, INBreast Accuracy: 93.75% Rotation, flipping, shear, scaling, etc.

[25] Mass detection Faster R-CNN CBIS-DDSM Sensitivity: 0.833 ± 0.038 Horizontal and Vertical Flipping

[63] Mass detection mr2NST
mammograms from
GE and UIH

- Neural Style Transfer

[81] BI-RADS Classification AlexNet INBreast Accuracy: 83.4 Image co-registration

[26] Tumor detection Modified AlexNet MIAS 95.70% Scaling, horizontal flip,
rotation (90, 180, 270)

[27] Mass Classification InceptionV3 and ResNet50 DDSM
Accuracy:
InceptionV3: 79.6
ResNet50-85.71

Geometric Transformation

[82] Mammogram classification Pre-trained CNN Architectures Private - Reflection and Rotation

[28] BI-RADS classification CNN MIAS Accuracy: 83.6% Flip, rotation, shift and zoom

[47] Mammogram
Classification

Pre-trained CNN Architectures MIAS Accuracy: 99.01%
Gaussian blurring, horizontal flipping,
internal refection and mild addition of
white noise

[48] Mass detection Google Inception-V3 INBreast ROC: 0.86 Gaussian noise, Flipping,
Changing image brightness

[83] Mass Classification VGG based DCNN INBreast, CBIS, BCRP - elastic deformations

[10] Mass Classification DCNN MIAS, INBreast, DDSM Conventional DA techniques: 88%
GAN: 94%

GAN

[84] Mass Classification AlexNet, InceptionV3 INBreast, CBIS-DDSM

Accuracy:
INBreast:
Alexnet: 0.9892,
InceptionV3: 0.9919
CBIS-DDSM:
Alexnet : 0.6138,
InceptionV3: 0.8142

rotation, flipping,shearing
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Table 2. Cont.

Ref. Task Performed Model Dataset Model Performance Data Augmentation Approach

[85] Lesion
Classification

ResNet50, VGG16, VGG19 CBIS-DDSM Accuracy: 90.4% Geometric transformation,
Contrast and brightness adjustment

[86] Abnormality
Classification

Meta Learning , REsnet101 CBIS-DDSM
Accuracy:
Meta Learning: 76%,
Resnet101: 71%

Geometric transformations

[30] Mammogram
Classification

VGGNet, GoogleNet, Resnet CBIS-DDSM, MIAS AUC: 0.932 Geometric transformations

[87] Mammogram
Classification

Residual Networks INBreast Specificity: 0.89 Rotation , Translation

[88] Mass detection InceptionV3 INBreast ROC: 0.91 Geometric transformations,
Contrast and brightness adjustment,

[31] Mammogram Classification Alexnet, Resnet Private - Geometric transformations

[89] AD detection Alexnet, SVM CBIS-DDSM, DDSM, MIAS Accuracy: 92 Geometric transformations, TTA

[34] Mammogram detection and
classification

YOLO INBreast Accuracy: 89.6 Rotation, Flipping

[90] Build datasets of breast
mammography

Alexnet, Densenet,
Shufflenet

INBreast - Rotation, Flipping

[91] Mass Detection Faster R-CNN OMI-DB
TPR:
0.99 ± 0.03 at 1.17 FPI—malignant
0.85 ± 0.08 at 1.0 FPI—benign

Horizontal Flipping

[92] Breast cancer diagnosis Pre-trained CNN
Architectures

CBIS- DDSM, BCDR,
INBreast,MIAS

F1 Score for MIAS 0.907 ± 0.150 -

[93] Breast cancer classification DCNN MIAS Accuracy: 90.50 Feature wise data augmentation

[56] Mass Classification CNN DDSM - cycle GAN

[33] Masses Discrimination GoogleNet DDSM Accuracy: 90.38% Flipping, Cropped-ROI, Gaussian
noise

[66] Image Classification VGG-16/19 Mini MIAS - Crossover technique

[55] Mass Image Synthesis GAN DDSM, Private - Contextual Information Based on
GANs

[67] Mass Detection One-Stage Object Detection
Architecture (BMassDNet)

INBreast
DDSM

Recall: INBreast: 0.93
DDSM:0.943

Elastic Deformation

[51] Mass Detection Fully Convolutional Network CBIS-DDSM
Inbreast

0.8040 PAUC
0.8787 TPR@0.5FPI

Adversarial Learning

[35] Breast Cancer Classification Deep CNN MIAS, DDSM,
Inbreast

Accuracy:
MIAS: 96.55%,
DDSM: 90.68%,
INbreast: 91.28%,

Geometric Transformations,
Gaussian noise

[36] Mass Detection Contrastive Learning,
CycleGAN

Inbreast, Private - Geometric Transformations

[68] Mass Classification Deep CNN Private 0.760 ± 0.015 for 80% labeled data Virtual Adversarial Training

[71] Mass Detection Eight Object Detection Models OPTIMAM, Inbreast,
BCDR

Out of eight models, DETR [94]
could perform well

Cutout and RandConv

[75] BI-RADS Classification EfficientNet-B2 Private Macro F1 score: 0.595 Transparency Strategy

[95] Mass Detection Pre-trained CNNs,
DenseNet, ResNet, ResNeXt

BCDR Accuracy: 84% Geometric Transformations

[96] Lesion Detection YOLOv4
Nested Contours Algorithm

INBreast Sensitivity: 93% by NCA Geometric Transformations

[97] Mammogram Density
Classification DenseNet201, ResNet50 MIAS Accuracy:

DenseNet201: 90.47%
Geometric Transformations

[65] Mass Segmentation U-Net DDSM Sensitivity: 92.32% Geometric Transformations

[98] Breast Cancer Detection Pre-trained CNNs
VGG-16, VGG-19, ResNet-50

MIAS Accuracy:
ResNet-50: 71%

Geometric Transformations
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Table 3. Articles with pre and post augmentation dataset size and model performance.

Ref. Pre-Augmentation Dataset Size Post-Augmentation Dataset Size Post-Augmentation Model Performance

[24] 280 (Mammograms) 345,000 ROIs -

[8]

5136 ROIs (MIAS),
410 whole images (Inbreast),
322 whole images (MIAS),
55,890 ROIs (DDSM, CBIS)

49,724 ROIs (MIAS),
7914 whole images (MIAS),
1688 whole images (Inbreast),
179,447 ROIs (DDSM, CBIS)

-

[25] - 8 new labels per image -

[81] 374 1560 samples Accuracy improved by more than 33%

[26] 322 2576 -

[82] 3290 26,320 -

[28] - - Rise in validation accuracy from
51.3% to 83.6%

[47] 322 9000 -

[48] - - Increased AUC from 0.78 to 0.86

[83] - - Improved FPI 3.509 (CBIS), 1.864 (BCRP)

[84] - - Rise in accuracy from 0.6026 to 0.8670

[10] 1798 Single image to be augmented into 546 images Rise in accuracy from 69.85% to 94%

[85] 5257 104,795 -

[30] - - Rise in accuracy from 78.92% to 80.56%

[88] - - Improvement in sensitivity from 0.786 to 0.913

[31] - - Improvement in auROC from 0.62 to 0.73

[89] 215 ROI 3006 ROI -

[34] 107 428 -

[90] 106 7632 -

[93] 221 (Patches) 1768 Patches -

[56] - - Improvement in accuracy by 1.4 %

[33] - Dataset is expanded by 24 times -

[66] - - Improvement in accuracy by 1.47%,

[55] - - Improvement in detection rate by 5.03%

[35] 322 (MIAS), 1500 (DDSM), 410 (Inbreast) 3200 (MIAS), 28,800 (DDSM), 2240 (Inbreast) -

[75] 25,373 (Training Samples) 28,000 (Training Samples) -

[96] 106 1080 -

[65] 7989 48,659 ROI -

4. Test-Time Augmentation (TTA)

Over the last few years, a new image augmentation technique has increasingly caught
researchers’ interest. It goes under the name of TTA, which stands for Test Time Augmenta-
tion. Wang et al. [99] provided the scientific community with a mathematic formulation
of TTA. They present TTA as an inference problem with hidden parameters and prior
distributions. Therefore, images are considered the results of an elaboration process with
hidden parameters. The final goal is to evaluate structure-wise uncertainty associated with
image transformations and noise. Other than the previously mentioned techniques, TTA
creates various augmented images of the test set, feeds these augmented images to the
trained model, and finally returns an ensemble of those predictions to get a more assertive
response [100]. Figure 11 shows the process of both train and test time augmentation, while,
in Figure 12, test-time data augmentation framework is depicted.

TTA has conveyed new possibilities to the medical imaging field by measuring the
strength and network consistency as practical issues [101]. TTA can be used for those
methods which modify an incoming example with affine, pixel-level, or elastic transforma-
tions in the case of lesion classification from mammograms. The research community has
focused on training data augmentations, while data transformation before inference has
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yet to be fully explored. TTA combines numerous inference findings utilising various data
augmentations to categorise one image (see Figure 12). Kim et al. [100] presented a TTA
method that is instance-aware and based on a loss predictor. They improved image classi-
fication performance with the dynamic use of TTA transformations. The authors of [102]
employed TTA for U-Net [103] to tackle medical image segmentation. Another study [104]
employed TTA with the model making predictions on five, 224⇥ 224 image patches, as well
as horizontally reflected patches (for a total of ten patches), and then averaging the outputs
on over the ten patches with the softmax layer. An inference approach called Mixup Infer-
ence (MI), reliant on simple geometric intuitions was proposed by Pang et al. [105]. The
method mixes inputs with additional random samples. Vedalankar et al. [89] addressed the
analysis of architectural distortion in mammograms with an integrated solution based on
AlexNet and SVM. However, the solution heavily relies on TTA as the data augmentation
technique for mammogram images.

Figure 11. Train and test-time data augmentation.

Figure 12. Test-time data augmentation framework.

5. Discussion

This section discusses data augmentation and its employment in mammogram analysis
and related tasks. The paper spans the main data augmentation approaches as listed
in Table 1. Most of them build on geometric transformations, noise injection, kernel
filters, mixing images, random erasing, generative adversarial training, and neural style
transfer. In Figures 4, 5 and 7 examples of basic geometric transformations and image
filtering show how simple operations and modifications allow increasing datasets’ volumes.
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Conversely, things gradually become more complex when surveying advanced image
augmentation methods. In Figures 8–10, pictures respectively taken from Shen et al.’s [55],
and Korkinot et al.’s [58] demonstrate the level of sophistication achieved by more recently
introduced deep learning techniques such as GANs in generating realistic mammograms.
It is not straightforward to discriminate synthetic images from real ones, especially to non-
expert eyes. Apart from the considerations mentioned above, it is necessary to span the
performances of those models that heavily rely on data augmentation, as shown in Table 2.
Around thirty methods tackling tasks such as mammogram classification, suspicious region
segmentation and micro-calcification identification are compared across several parameters.
The following subsection checks through two main aspects: the data augmentation impact
on the dataset sizes, and the pre and post-augmentation performances of the approaches as
depicted in Tables 2 and 3.

Data Augmentation Impact

Although several methods achieve decent accuracy rates over several datasets, three
main points are to be highlighted:

1. Oyelade and Ezugwu [8] achieved a 93.75% accuracy rate on anomaly detection from
mammograms using a CNN-based technique and basic data augmentation techniques
(rotation by 90, 180 and 270 degrees, mirroring and additive Poisson noise).

2. Conditional infilling GANs for data augmentation in mammogram classification
by Dhivya et al. [10] averagely scored 94% accuracy over three different datasets,
respectively, MIAS, INBreast and DDSM, which include images having heterogeneous
spatial resolution and acquiring device properties. The same method gets to an 88%
accuracy rate when only basic data augmentation techniques are adopted.

3. Razali et al. [84] reached an excellent 99% accuracy rate on InBreast and DDSM
with basic augmentation techniques on two datasets. However, it would be worth
investigating any further improvement with advanced data augmentation techniques.
However, after surveying all methods in Table 2, it is noticeable how advanced
mammogram augmentation impacts the accuracy rate improvement by 6% over three
different datasets. Investigating all elements causing an increase in accuracy on a
specific task is not trivial.

Table 3 allows comparing several methods according to the data augmentation impact
on dataset size and performances over different datasets. The table consists of three columns
for pre-augmentation dataset size, post-augmentation dataset size, and post-augmentation
model performance. Overall, regardless of the specific augmentation technique employed,
the increasing factor for the datasets is remarkably high. Spanning all methods in Table 3,
the dataset in [81] got its size increased by a factor of around 5, while in [26] the same factor
goes up to 7. Adegiba et al. [47] successfully got the number of patches up to 29 times
the original size. Each image in [10] remarkably turns into 546 new samples, and the post-
augmentation performances improved by almost 25%. Fourteen is the dataset size growing
factor in [89], moving from 215 to 3006 ROIs (Regions of Interest). Muduli et al. [35] were
able to extend MIAS, DDSM and INbreast, respectively, by 10, 19.2 and 5.4 times their
original sizes.

As far as it concerns the data augmentation impact on the methods’ performances,
the third column in Table 3 provides details on the accuracy, AUC, sensitivity, and auROC.
Unfortunately, due to the lack of experimental results description in the original articles,
only some methods can be discussed here. Starting from the fourth row in Table 3, the
image co-registration augmentation technique allowed Domingues et al. [81] to gain 33%
on accuracy rates. Fundamental transformations such as flipping, rotation, shifting and
zooming proved effective in Shi et al.’s method [28], with a gain of 32.3% on the validation
accuracy rate over MIAS. Razali et al. [84] obtained post-augmentation performances in
breast cancer classification 26% higher. Only rotation, flipping and shearing were applied to
INBreast and CBIS-DDSM. The GAN-based data augmentation adopted by Dhiva et al. [10]
turned out to be reliable over three datasets: MIAS, DDSM, and INBreast. On the other
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side, the geometric transformations tested in [30] only slightly hit the target with a small
improvement of 1.6% in mammogram classification with VGGNet, GoogleNet and ResNet.
Lu et al. [88] reported improvements in Inception V3 sensitivity rates in mass detection over
the INBreast dataset that was augmented with geometric transformations plus contrast and
brightness adjustments. Rises in sensitivity rates may correspond to drops in false negatives
in the detection system. The post-augmentation AUC of the classification system proposed
in [31] is higher than the pre-augmentation AUC by 0.21. However, the experimental dataset
is private, and the size increase factor obtained with geometric transformations is unknown.
If the two advanced techniques adopted in [56,66] struggle to get remarkable classification
accuracy rate improvements, the GAN-based method in [55] proved its reliability over two
main tasks: mammogram image synthesis and suspicious region detection.

6. Conclusions

This paper aims to provide insights into the broader area of mammogram image
analysis from a data augmentation perspective. Although some deep learning methods’
performances are excellent, further investigations are necessary to draw a line on the impact
of data augmentation on the information generalisation capabilities of supervised deep
learning paradigms. Some evidence shows a decisive increase in accuracy rates from basic
to advanced augmentation techniques, especially the GANs-based ones. The first sections
introduce the main theoretical concepts about the most widely adopted data augmentation
techniques in a broader sense. In this work, the techniques mentioned above are surveyed
to check out their pros and cons in a specific topic, that is, mammogram image analysis.

The advent of deep learning approaches and the increasingly sophisticated archi-
tectures to extract hidden properties from data play a critical role in various computer
vision tasks. The main goal here is to discuss specifically the impact of data augmentation
techniques on deep learning methods in tasks such as suspicious region detection and
classification.

In Tables 2 and 3, methods from the scientific literature are listed and compared across
factors such as task performed, model, dataset, model performance, data augmentation
approach. Thanks to the undisputed knowledge inference capabilities of deep learning
architectures, most methods reviewed in this paper reach high accuracy rates on their tasks
and over some specific datasets. Overall, most DL methods score high in architectural
distortion detection, mass detection, density classification, and more generic suspicious
region detection. Moreover, the contribution of data augmentation techniques is remarkable,
especially to the dataset size increase and accuracy rates improvement. For instance, the
tumour classification method proposed in [10] benefits from GAN-based data augmentation,
an increased factor of 546 for the dataset. Furthermore, as described in Table 3, the method’s
accuracy rate goes up to 94% with an improvement of almost 25% compared to the pre-
augmentation performance. Apart from that, our discussion needs to consider that the
latter works out mass classification over three different datasets: MIAS, INBreast and
DDSM. Moreover, the so-called conventional data augmentation techniques (geometric
transformations) allow up to 88% of accuracy, while the more advanced GAN-based
techniques outperform them by 6%.

Current and future trends in computer vision see new methods building on self-
supervised and semi-self supervised paradigms competing with supervised learning ap-
proaches. Purely supervised learning approaches combined with advanced data augmenta-
tion should, then, run against self-supervised and semi self-supervised learning methods
to balance computational costs, accuracy rates, and information generalisation capabilities.
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Abbreviations

The following abbreviations are used in this manuscript:

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
DL Deep Learning
CNN Convolutional Neural Network
TL Transfer Learning
CAD Computer-Aided Diagnosis
BI-RADS Breast Imaging Reporting and Database System
ROI Region of Interest
NST Neural Style Transfer
GAN Generative Adversarial Network
AUC Area Under Curve
ROC Receiver Operating Characteristic
AD Architectural Distortion
TTA Test Time Augmentation
VAT Virtual Adversarial Training
UIH United Imaging Healthcare
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