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1 Introduction

1.1 Consumer neuroscience and neuromarketing

Consumer Neuroscience and Neuromarketing apply neuroscience tools and

methodologies to investigate consumer behavior (Karmarkar and Plassmann, 2017; Lim,

2018), addressing the limitations of traditional marketing techniques (Hakim and Levy,

2018). Although often used interchangeably, these two terms have different meanings:

Consumer Neuroscience, which is more theoretical/academic, is considered as the

scientific foundation of Neuromarketing, a more practical and commercially oriented

discipline (Nemorin, 2016; Ramsøy, 2019).

Established in the early 2000s (Smith, 2002; Yoon et al., 2006), Neuromarketing and

Consumer Neuroscience have become increasingly popular topics among researchers.

According to a recent review (Casado-Aranda et al., 2023), as of 2022, 862 articles were

published in international journals belonging to psychology (28.45%), business (24.75%),

communication (24.08%), and neuroscience (15%), along with management, information

technology, and behavioral science (7.72%). The scientific production increased annually

by 7.5% and involved 2,354 contributors (3.83 average co-authors per study) with 24.97%

of international collaborations.

Consumer Neuroscience and Neuromarketing collect neurophysiological and

biometric signals (decoded into “neurometrics”) from subjects during the exposure

to marketing stimuli/tasks, in order to assess the underlying cognitive and emotional

processes (Cherubino et al., 2019).

The most frequently recorded signals include electroencephalogram—EEG (56.14%),

eye tracking—ET (10.53%), skin conductance—SC, cardiac activity (8.77%), and

electromyogram - EMG (1.75%) (Rawnaque et al., 2020). Facial expressions are also

included in the standard set of Neuromarketing and Consumer Neuroscience measures

(Mancini et al., 2023). Typical stimuli include video advertisements (Zito et al., 2021;

Russo et al., 2022, 2023), radio commercials (Russo et al., 2020), product packaging (Russo

et al., 2021), static creativities (Ciceri et al., 2020), and websites (Bengoechea et al., 2023).

Common tasks include the buying processes (Cherubino et al., 2017), in-store experiences

(Balconi et al., 2021), and food choices (Stasi et al., 2018).

Decision-making, memory, attention, and approach-withdrawal motivation are the

main assessed psychological processes (Cherubino et al., 2019), but emotions, above all,

have attracted the greatest scientific interest (Casado-Aranda et al., 2023), probably due to

their well-established role in mediating several cognitive functions (Pessoa, 2008; Lerner

et al., 2015; Soodan and Pandey, 2016; Tyng et al., 2017).
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Neurometrics were originally intended as invariant and highly

selective “biomarkers”, as they derived from a large number

of experimental neuroimaging studies (Plassmann et al., 2012).

However, they have soon been called into question due to their

correlational (rather than causal) nature (Plassmann et al., 2015;

Ramsøy, 2019), which leads to the reverse inference fallacy (Lee

et al., 2017), a common albeit serious problem in neuroscience

(Poldrack, 2006). Despite Machine Learning models have been

suggested as a reliable solution for the reverse inference issue, they

still remain largely ignored (Nathan and Pinal, 2017). Indeed, as of

2019, only 35.1% of Neuromarketing and Consumer Neuroscience

studies employed these techniques (Rawnaque et al., 2020).

1.2 A�ect Detection

Affect Detection (AD) aims to design automatic systems to

recognize human emotions from neurophysiological, biometric,

and behavioral signals (Calvo and D’Mello, 2010). Initially

developed within the Affective Computing, a Computer Science

subbranch established in the late 1990s (Picard, 1995, 1997), AD

had a far-reaching impact, influencing several research contexts,

such as Transportation, Defense, and Secutity, Human Resources,

Education, Mental Health and even Market Research (Hernandez

et al., 2021).

Since its original formulation, AD has been treated as a

Machine Learning problem (Picard, 1995) based on a model

f trained to predict the affective state s from a set of

neurophisiological and biometric variables m = (m1, ...,mm)
T ∈

R
m, categorized into “modalities” (Picard, 1997). Depending on the

chosen emotional theory (Gunes and Pantic, 2010), the emotional

state s is modeled as a discrete or continuous quantity, which, in

turn, determines whether the problemwill be treated as a regression

or a classification, respectively. A comprehensive discussion on the

Machine Learning theory applied to the emotion recognition field

goes beyond the scope of this article. Interested readers can refer

to introductory tutorials, such as Zhang et al. (2020) and Can et al.

(2023).

The classification approach is preferred, even in the case of

a continuous emotional model, where the dimensions are early

categorized (e.g., low, medium and high). Despite 63% of the

studies referred to the continuous emotional models, 92% of them

adopted classifiers (D’Mello and Kory, 2015), regardless of the

modalities (90% with the voice and 92% with physiological signals)

(Imani andMontazer, 2019) and within the wearable context (98%)

(Schmidt et al., 2019). Furthermore, a more recent survey that

examined more than 380 AD papers published between 2000 and

2020 did not report any regression methods (Wang et al., 2022).

Common modalities include facial expressions, voice, gaze

movements, and physiological signals related to either the

Peripheral (PNS) or the Central Nervous System (CNS) (Calvo

and D’Mello, 2010). Signals from the PNS include EMG,

SC, Electrocardiogram (EEG), Photoplestimogram (PPG), and

Electrooculogram (EOG). Signals from CNS include EEG,

functional Magnetic Resonance Imaging (fMRI), and functional

Near-Infrared Spectroscopy (fNIRS) (Shu et al., 2018; Larradet

et al., 2020). Voice and facial expressions are the most popular,

TABLE 1 Qualitative comparison between I DARE and the eight most

popular physiological-based datasets in terms of modalities and stimuli

type.

Dataset Modalities Stimuli

AMIGOS EEG, ECG, EDA Video clips

ASCERTRAIN EEG, ECG, EDA Movie clips

BIO-VID-EMO DB ECG, EMG, SC Film clips

DEAP EEG, EDA, EMG, PPG, EOG, Resp Music videos

DREAMER EEG, ECG Film clips

MAHNOB-HCI EEG, ECG, SC, Resp, Temp, ET Video clips

MPED ECG, EEG, PPG, SC, Resp Video clips

SEED EEG Film clips

I DARE EEG, EMG, SC, PPG, ET Images

varying from 82% and 77% (D’Mello and Kory, 2015) to 21%

and 54% (Wang et al., 2022), respectively. Physiological signals

are adopted in ∼16% of the models overall (Wang et al., 2022):

at least 10% from the PNS and 5% from the CNS (D’Mello and

Kory, 2015). Wearable applications draw a completely different

scenario: the modalities include 100% PNS signals, 15% CNS, only

2% facial expressions, and never the voice (Schmidt et al., 2019).

Multimodal models (i.e., based on at least two modalities) vary

from 85% (D’Mello and Kory, 2015) to 93% (Schmidt et al., 2019).

Affective datasets are collections of modalities annotated in

terms of the corresponding affective states and are used to train

AD models (D’Mello et al., 2017). The modalities can be either

extracted from existing data (e.g., facial expressions from video

clips) or newly recorded during experiments (e.g., EEG data from a

sample of subjects). Furthermore, affective states can be induced

by external stimuli or emerge naturally, as well as posed or

spontaneously emitted (D’Mello and Kory, 2015; Zhao et al., 2021).

In the literature, multiple affective datasets that vary largely

in terms of modalities, labels, and origin of the affective state are

found. We have taken into account a representative sample of 58

datasets, gathered from two reviews (Siddiqui et al., 2022; Ahmed

et al., 2023) and three recent research studies (Chen et al., 2022;

Saganowski et al., 2022; Pant et al., 2023). Accordingly, the number

of modalities varies from 1 to 7 (M = 2.28, SD = 1.24) and include

71.2% the face, 54.2% the voice, 23.7% EEG, 20.3% ECG, 17% PPG,

6.8% EMG, and 6.8% ET. Overall, 81% of the datasets contain newly

recorded modalities. The affective states, that are mostly labeled

according to a discrete model (70.7%), are mainly induced (69%)

and spontaneous (63%).

A recent survey (Ahmad and Khan, 2022) compared

the stimuli, modalities, and sample size of the eight most

popular datasets for the training of physiological-based AD

models: AMIGOS (Miranda-Correa et al., 2018), ASCERTRAIN

(Subramanian et al., 2016), BIO-VID-EMO DB (Zhang et al.,

2016), DEAP (Koelstra et al., 2011), DREAMER (Katsigiannis

and Ramzan, 2017), MAHNOB-HCI (Soleymani et al., 2011),

MPED (Song et al., 2019), and SEED (Zheng et al., 2017). The

stimuli, varying from 10 to 40 (M = 23.5, SD = 9.943) are all

induced and spontaneous. The number of modalities, varying
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from 1 to 6 (M = 3.38, SD = 1.60), includes EEG (87.5%), ECG

(75%), SC (37.5%), respiration (37.5%), PPG (25%), EMG (25%),

peripheric temperature—Temp (12.5%), and ET (12.5%). The

sample size ranges from 15 to 86 (M = 38, SD = 23.43). The

“dataset dimension”, defined as the product between stimuli,

modalities, and sample sizes, ranges from 225 to 7,680 (M =

3,257.88, SD = 2,581.12). Finally, the stimuli are all dynamic,

including video clips (37.5%), film clips (37.5%), movie clip

(12.5%), and music video (12.5%). The features of the eight

most popular datasets (plus the proposed one) are presented

in Tables 1, 2.

For each dataset, we conducted statistical analyses using JASP

(Love et al., 2019), to explore relationships between the number of

modalities, stimuli, and sample size. Additionally, we performed

sensitivity analyses using G*Power (Faul et al., 2007) to estimate,

from the sample size and the number of stimuli, the minimum

detectable effect size. No significant correlations between the

number of modalities and subjects (Spearman’s correlation: ρ =

0.270, p = 0.518), modalities and stimuli (Spearman’s correlation:

ρ = 0.700, p = 0.053), and subjects and stimuli (Spearman’s

correlation: ρ = 0.084, p = 0.843) emerged, suggesting that the

dataset-specific characteristics are not bounded by technological or

experimental constrains. The sensitivity analysis, which was based

on the repeated measures ANOVA model (stimulus ID as within

factor, α = 0.05, 1 − β = 0.95, r = 0.5, ǫ = 1), showed an

averageminimumdetectable effect size of f = 0.157±0.051 ranging

from 0.095 to 0.253, interpretable as “small” to “medium” (Cohen,

2013).

1.3 I DARE dataset

We contend that the diffusion of AD models within

Neuromarketing and Consumer Neuroscience could be increased

by addressing the limitations of existing datasets. We believe

that the strictest one is the use of videos as a unique elicitation

method, which may lead to AD models that are unsuitable for the

evaluation of static or short-term stimuli (e.g., static creativities,

product packaging, or landing pages), as well as for a dynamic

classification (Bilucaglia et al., 2021) of multi-frame stimuli (e.g.,

video commercials). A less severe (but still present) limitation

is the varying number of stimuli that affects the minimum

detectable effect size and, in turn, the reliability and generalizability

of the results (Funder and Ozer, 2019). Finally, despite their

popularity in Consumer Neuroscience and Neuromarketing,

modalities such as ET, SC, PPG and EMG are not as

widely represented.

We present I DARE, the IULM Dataset of Affective REsponses,

a multimodal (five modalities: EEG, SC, PPG, EMG, and ET)

physiological affective dataset gathered from 63 participants, based

on 32 images as elicting stimuli, corresponding to a dimension of

5 × 32 × 63 = 10, 080. A sensitivity analysis, performed using

G*Power under the same previously described conditions, showed

a minimum detectable effect size of f = 0.095, considered as

“small”. As shown in Table 2, I DARE exceeds existing dataset

in three key aspects: it is based on static pictures, it has the

highest dimension, and it allows the lowest minimum detectable

effect size.

2 Materials and methods

2.1 Stimuli selection

We extracted the eliciting stimuli from both the IAPS (Lang

et al., 2008) and OASIS (Kurdi et al., 2017), two standard datasets

of realistic pictures that have been annotated in the valence and

arousal dimensions by ∼100 independent raters. The annotations

are provided as mean (m) and standard deviation (s) across

the raters, for both the valence (mv, sv) and the arousal (ma, sa)

dimensions.

For each dataset, we performed the stimuli selection through a

seven-step semi-automatic procedure. Steps 1–5 (automatic) were

based on the geometrical properties of the stimuli in the two-

dimensional Valence-Arousal space, which were considered either

as points x = (mv,ma)
T or gaussian vectors x ∼ N (µ,6), with

µ = (mv,ma)
T and 6 =

(

sv 0
0 sa

)

. Steps 6, 7 were based on the

ratings provided by nine independent judges.

The selection process yielded 32 stimuli (16 per dataset),

belonging to each of the 4 quadrants of the Valence-Arousal

space (HVLA - High Valence High Arousal, HVLA - High

Valence Low Arousal, LVHA—Low Valence High Arousal, and

LVLA - Low Valence Low Arousal). The whole procedure

is shown in the https://figshare.com/projects/I_DARE/186558

(Stimulus_Selection.pdf file).

2.2 Sample population and experimental
protocol

Sixty-three people (24 men) with age ranging from 20 to 30

years (M = 22.89, SD = 2.38) were enrolled in the study. Statistical

analyses performed using JASP showed that the sample was not

significantly gender unbalanced in terms of proportions (Binomial

test: Male = 38.1%, p = 0.077) and mean age (Mann–Whitney U

test: W = 3995, p = 0.325). The sample characteristics are shown

in https://figshare.com/projects/I_DARE/186558 (Sample.csv

file).

The protocol was approved by the Ethics Committee of the

Università IULM, and an informed consensus was obtained from

each participant.

Each subject sat on a chair placed in front of a 23.8′′

(527 × 296.5mm2) FlexScan EV2451 (Eizo, KK) monitor located

in a 7 × 3m2 room. At the beginning of the experiment, the

subject performed a 60 s-long eye-closed baseline and a 120 s-

long neutral baseline (white fixation dot on a black background).

This was preceded by the baseline instructions and followed

by the experiment description. Then, 32 emotional blocks were

presented in a random order. Each block consisted of a black

screen (5 s), followed by the emotional stimulus (5 s) and the

valence/arousal evaluation, performed by means of a nine-point

SAM (Bradley and Lang, 1994). The description and duration of the

stimuli are shown in https://figshare.com/projects/I_DARE/186558

(Stimuli_Specification.csv file).

The quality of the signals was visually checked before starting

the recording, and the contact impedance of the EEG electrodes was

reduced below 10k� (Sinha et al., 2016) by means of a scrub cream

(Neurprep by Spes Medica, S.p.A.) and a conductive gel (Neurgel

by Spes Medica, S.p.A.).
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TABLE 2 Quantitative comparison between I DARE and the eight most popular physiological-based datasets in terms of number of modalities, stimuli,

and subjects, as well as dimension and minimum detectable e�ect size (Cohen’s f).

Dataset # Modalities # Stimuli # Subjects Dimension Cohen’s f

AMIGOS 3 16 40 1,920 0.149

ASCERTRAIN 3 36 58 6,264 0.095

BIO-VID-EMO DB 3 15 86 3,870 0.104

DEAP 6 40 32 7,680 0.125

DREAMER 2 18 23 828 0.191

MAHNOB-HCI 5 20 27 2,700 0.170

MPED 4 28 23 2,576 0.166

SEED 1 15 15 225 0.253

I DARE 5 32 63 10,080 0.095

2.3 Instrumentation

We recorded the EEG signal using the NVX-52 device (Medical

Computer Systems, Ltd.) at a sample frequency of fs = 1kHz.

Forty passive wet Ag / AgCl electrodes were placed at standard

locations (Russo et al., 2023) of the 10-10 system (Nuwer, 2018) and

referenced to the left mastoid (M1) by means of 1 Ag/AgCl passive

adhesive patch. We recorded the SC and PPG signals using the

GSRSens and FpSens (Medical Computer Systems, Ltd.) sensors,

respectively, both connected to the auxiliary inputs of the NVX-

52. We placed two passive dry Ag/AgCl electrodes of the GSRSens

on the index and middle finger from the non-dominant hand and

the FpSens on the ring finger from the same hand. We recorded

the EMG signal using two passive Ag/AgCl adhesive patches placed

over the left zygomaticus major and corrugators supercilii muscles.

The electrodes, connected to the bipolar inputs of the NVX-

52, were referenced to M1. The recordings were controlled by

NeoRec software (Medical Computer Systems, Ltd.). We recorded

the ET signal using the Tobii Spectrum (Tobii, LLC) device at a

sample frequency of fs = 150Hz. The collected measures included

the horizontal and vertical coordinates of the right and left eyes

(xR, yR, xR, and yL, respectively), expressed in mm with respect to

the upper-left corner of the screen.

We used the iMotions software (iMotions, A/V) to deliver the

stimuli and to collect the eye tracking data and the SAM responses.

At the beginning of the experiment, iMotions generated a TTL

pulse that was fed into the digital inputs of the NVX-52 using

the ESB - EEG Synchronization Box (Bilucaglia et al., 2020). This

served to perform an off-line synchronization between the recorded

data and the stimuli timestamps.

2.4 Data processing

We aligned the recorded data with the TTL pulse and appended

the stimuli, according to the iMoions-generated timestamps.

Then, we cleaned the data from noise and artifacts, as described

below. The operations were performed within the Matlab

(The Mathworks, Inc.) environment, and the processed data

were saved as .mat files. A comprehensive discussion on the

biomedical data processing goes beyond the scope of this article.

Interested readers can refer to introductory textbooks, such as

Blinowska and Żygierewicz (2021) and Rangayyan and Krishnan

(2024).

2.4.1 EEG
We processed the EEG data using the EEGLab toolbox

(Delorme and Makeig, 2004). We applied a re-reference to the

linked earlobes, a resample to fS = 512Hz, a band-pass filter (0.1−

40Hz, 4th order zero-phased Butterworth filter), and an adaptive

filter (cleanline plug-in), to remove the sinusoidal noise

(50Hz, 100Hz). We applied the artifact Subspace Reconstruction

(cutoff parameter k = 20) to correct large non-stationary

artifacts (Chang et al., 2018). Then, we performed the Independent

Component Analysis (ICA) decomposition trough the RunICA

algorithm (Akhtar et al., 2012) on a copy of the original data

that have been band-pass filtered (1 − 30Hz, 4th order zero-

phased Butterworth filter) and down-sampled (fs = 100Hz)

(Luck, 2022). The obtained ICA weights were then saved and

multiplied to the original data, to get the ICs. We identified

artifactual ICs through the neural-net classifier ICLabel (Pion-

Tonachini et al., 2019) as those with probability of “non-brain”

P{!brain}>0.9, and we set them to zero and back-projected

them to the original space. Finally, we re-referenced the artifact-

free data to the approximatively-zero potential REST (Dong et al.,

2017).

2.4.2 SC
We applied a resample at fS = 32Hz and a band-pass filter

(0.001 − 0.35Hz, 4th order zero-phased Butterworth filter). We

identified artifactual points as those exceeding two fixed thresholds

(amplitude: 0.05–60 µS, rate of change: ±8 µS/s) and deleted all

the neighbour within a centered 5s−long window (Kleckner et al.,

2018). Finally, we reconstructed the deleted points by means of a

linear interpolation applied on the whole data.
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2.4.3 PPG
We applied a resample at fS = 32Hz, a band-pass filter (0.001−

0.35Hz, 2nd order zero-phased Butterworth filter), and a filter based

on the Hilbert’s transform, to attenuate slow drifts and motion

artifacts (Dall’Olio et al., 2020).

2.4.4 EMG
We applied a notch filter (50Hz, 100Hz, q = 40, zero-phased

IIR filter), to remove the power-line noise and a band-pass filter

(10−400Hz, 4th order zero-phased Butterworth filter), to attenuate

low-frequency motion artifacts (Merletti and Cerone, 2020).

2.4.5 ET
We corrected temporal jitters by re-aligning the timestamps

with the equipment-designed sample frequency (fs = 150Hz) and

linearly interpolating the missing values (Liu et al., 2018). Then,

we filtered the coordinates xR, yR, xL, and yL using the MFLWMD

algorithm (window length 140ms, threshold g = 280ms), to reduce

outliers and missing data (Gucciardi et al., 2022). Finally, we

computed the horizontal and vertical gaze positions as, respectively,

gX = (xR + xL)/2 and gY = (yR + yL)/2 (Kar, 2020).

3 Dataset description

I DARE includes the output of the stimuli selection process, the

SAM evaluations, and the processed modalities.

3.1 Stimuli selection

The selected stimuli obtained a percentage agreement ranging

from 56.56% to 100% (M = 79.20%, SD = 10.50%). Statistical

analyses performed using JASP did not show any significant

main effect for the factors “Database” [F(1, 24) = 0.143, p =

0.709] and “Quadrant” [F(3, 24) = 2.381, p = 0.095], as

well as for the “Database×Quadrant” [F(3, 24) = 0.048, p =

0.986] interaction. Additionally, the agreement did not significantly

correlate with the mean (m) and standard deviations (s) of the

overall ratings in both the valence (ρm = 0.194, p = 0.288; ρs =

−0.175, p = 0.339) and the arousal (ρm = −0.142, p =

0.439; ρs = 0.109, p = 0.553) dimensions. The results of

the stimuli selection process are shown in https://figshare.com/

projects/I_DARE/186558 (Agreement_Raters.csv file).

3.2 SAM evaluations

We coded the subjects’ evaluations (SAM numerical scores)

into labels corresponding to the four quadrants (HVLA, LVLA,

HVHA, and LVHA), considering the mid-point value 5 as

threshold for the low/high discrimination.Wemeasured the overall

agreement within the subjects (WS) and between the subjects

and the gold standard (GS) given by the selection process by

means of the Fleiss’ kappa (Fleiss, 1971). The analyses, performed

using JASP, showed values of κWS = 0.406 and κGS = 0.409,

both intepreted as a “fair agreement” (Landis and Koch, 1977).

The SAM evaluations are shown in https://figshare.com/projects/I_

DARE/186558 (Valence_SAM.csv, Arousal_SAM.csv and

Quadrants_SAM.csv files).

3.3 Modalities

We grouped the processed data based on their sample

frequency and stored them into separated folders (EEG, EMG,

SC&PPG, and ET) containing 63 .mat files each (1 per subject).

The files consist of Matlab’s “structure arrays” with the following

fields:

• subject: subject’s unique identifier

• Fs: sample frequency

• channels: channels’ name

• channels_type: modality (EEG, SC, PPG, and ET)

• channels_unit: channels units of measurement

(µV µS, a.u., mm)

• data: data matrix (rows: channels, columns: sample points)

• time: vector of sample points

• event_id: stimuli labels

• event_begin: stimuli onsets as positions within the time

vector

• even_end: stimuli offsets as positions within the time

vector

4 Conclusion

Emotions are the most commonly explored aspect within

Consumer Neuroscience and Neuromarketing. Their assessment

has been mainly performed by mean of neurometrics, an approach

often questioned due to the potential reverse inference problem.

By contrast, Machine Learning methods (i.e., AD models), that

have been proposed as a reliable solution to the issue, are still

under-represented.

Existing physiological datasets rely on dynamic eliciting

stimuli, making them unsuitable to train AD models for the

evaluation of images or the dynamic frame-by-frame classification

of videos. Furthermore, the available data sets are characterized

by a wide-varying number of subjects, stimuli, and modalities,

negatively affecting their reliability and generalizability.

To fill these gaps, we created I DARE (the IULM Dataset

of Affective REsponses), a multimodal physiological dataset that

outperforms existing ones in terms of dimension (5 modalities

× 32 stimuli × 63 subjects) and minimum detectable effect size

(f = 0.095, small). We selected the stimuli (static pictures) from

the two standard databases (IAPS and OASIS) through a semi-

automatic procedure, to reduce the selection biases. We obtained

“fair” agreements within subjects and between subjects and the

original scores (κWS = 0.406 and κGS = 0.409, respectively).

We must acknowledge some limitations of I DARE. First,

while the sample was not significantly gender unbalanced, it

mainly consisted of young subjects (i.e., ≤ 30 years old). This

could potentially impact the sensitivity of trained AD models

toward age differences. Including new data from older subjects
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would not only help to address the imbalance in the dataset

but also increase its size and, consequently, its representativity.

Second, the experimental paradigm, which was chosen to minimize

confounding effects and biases, may also have affected the

ecological validity of the collected data. As a result, the applicability

of trained AD models in real-life situations may be limited. To

examine this hypothesis, future experiments outside the laboratory,

using natural stimuli and wearable devices, should be carried

out.

Nevertheless, we believe that I DARE could be helpful in

several applications. It could be used for the emotional assessment

of static creativities (e.g., product packaging, landing pages) and

the dynamic classifications of video commercials in Consumer

Neuroscience and Neuromarketing researches, as well as to

train AD models for Affective Computing and Neuroergonomics

applications. Additionally, it could serve as a benchmark for the

assessment of the emotional selectivity and invariance of existing

neurometrics, as well as to study the physiology of emotions in the

Psychology and Cognitive Neuroscience fields.

To foster its adoption by a larger audience of scientists, I DARE

has beenmade publicly available at https://figshare.com/projects/I_

DARE/186558.
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